These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17168740)

  • 1. Plasma membrane electron transport: a new target for cancer drug development.
    Herst PM; Berridge MV
    Curr Mol Med; 2006 Dec; 6(8):895-904. PubMed ID: 17168740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.
    Gray JP; Eisen T; Cline GW; Smith PJ; Heart E
    Am J Physiol Endocrinol Metab; 2011 Jul; 301(1):E113-21. PubMed ID: 21505151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumour cell lines and primary immune cells.
    Herst PM; Petersen T; Jerram P; Baty J; Berridge MV
    Biochem Pharmacol; 2007 Dec; 74(11):1587-95. PubMed ID: 17904534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):231-42. PubMed ID: 11229528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple indirect colorimetric assay for measuring mitochondrial energy metabolism based on uncoupling sensitivity.
    Herst PM; Grasso C; Fabre MS; Boukalova S; Ezrova Z; Neuzil J; Berridge MV
    Biochem Biophys Rep; 2020 Dec; 24():100858. PubMed ID: 33294636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis.
    Wang C; Chen H; Zhang M; Zhang J; Wei X; Ying W
    Cancer Lett; 2016 Aug; 378(1):1-7. PubMed ID: 27157912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell surface oxygen consumption by mitochondrial gene knockout cells.
    Herst PM; Tan AS; Scarlett DJ; Berridge MV
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):79-87. PubMed ID: 15178469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits.
    Herst PM; Perrone GG; Dawes IW; Bircham PW; Berridge MV
    FEMS Yeast Res; 2008 Sep; 8(6):897-905. PubMed ID: 18657191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines.
    Herst PM; Berridge MV
    Biochim Biophys Acta; 2007 Feb; 1767(2):170-7. PubMed ID: 17266920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system--a unique mitochondrial energy metabolism in tumour microenvironments.
    Tomitsuka E; Kita K; Esumi H
    J Biochem; 2012 Aug; 152(2):171-83. PubMed ID: 22528668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.
    Ban HS; Xu X; Jang K; Kim I; Kim BK; Lee K; Won M
    PLoS One; 2016; 11(9):e0162568. PubMed ID: 27611801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting aspartate aminotransferase in breast cancer.
    Thornburg JM; Nelson KK; Clem BF; Lane AN; Arumugam S; Simmons A; Eaton JW; Telang S; Chesney J
    Breast Cancer Res; 2008; 10(5):R84. PubMed ID: 18922152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.
    Sandbichler AM; Jansen B; Peer BA; Paulitsch M; Pelster B; Egg M
    Cell Physiol Biochem; 2018; 46(3):1159-1174. PubMed ID: 29672321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo inhibition of trans-plasma membrane electron transport by antiviral drugs in grapevine.
    Panattoni A; Rinaldelli E; Triolo E; Luvisi A
    J Membr Biol; 2013 Jul; 246(7):513-8. PubMed ID: 23774971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mycophenolic acid on trans-plasma membrane electron transport and electric potential in virus-infected plant tissue.
    Rinaldelli E; Panattoni A; Luvisi A; Triolo E
    Plant Physiol Biochem; 2012 Nov; 60():137-40. PubMed ID: 22935477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells.
    Zeng L; Zhou HY; Tang NN; Zhang WF; He GJ; Hao B; Feng YD; Zhu H
    World J Gastroenterol; 2016 May; 22(20):4868-80. PubMed ID: 27239113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.