These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 17168755)
1. Sensor/effector drug design with potential relevance to cancer. Fry FH; Jacob C Curr Pharm Des; 2006; 12(34):4479-99. PubMed ID: 17168755 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and selective anticancer activity of organochalcogen based redox catalysts. Doering M; Ba LA; Lilienthal N; Nicco C; Scherer C; Abbas M; Zada AA; Coriat R; Burkholz T; Wessjohann L; Diederich M; Batteux F; Herling M; Jacob C J Med Chem; 2010 Oct; 53(19):6954-63. PubMed ID: 20836556 [TBL] [Abstract][Full Text] [Related]
3. The redox-active nanomaterial toolbox for cancer therapy. Ibañez IL; Notcovich C; Catalano PN; Bellino MG; Durán H Cancer Lett; 2015 Apr; 359(1):9-19. PubMed ID: 25597786 [TBL] [Abstract][Full Text] [Related]
4. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Tovmasyan A; Sampaio RS; Boss MK; Bueno-Janice JC; Bader BH; Thomas M; Reboucas JS; Orr M; Chandler JD; Go YM; Jones DP; Venkatraman TN; Haberle S; Kyui N; Lascola CD; Dewhirst MW; Spasojevic I; Benov L; Batinic-Haberle I Free Radic Biol Med; 2015 Dec; 89():1231-47. PubMed ID: 26496207 [TBL] [Abstract][Full Text] [Related]
5. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage. Peng X; Gandhi V Ther Deliv; 2012 Jul; 3(7):823-33. PubMed ID: 22900465 [TBL] [Abstract][Full Text] [Related]
7. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Fang J; Seki T; Maeda H Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Denny WA Future Oncol; 2010 Mar; 6(3):419-28. PubMed ID: 20222798 [TBL] [Abstract][Full Text] [Related]
9. Dual Stimuli-Activatable Oxidative Stress Amplifying Agent as a Hybrid Anticancer Prodrug. Han E; Kwon B; Yoo D; Kang C; Khang G; Lee D Bioconjug Chem; 2017 Apr; 28(4):968-978. PubMed ID: 28192990 [TBL] [Abstract][Full Text] [Related]
10. Reactive oxygen species in redox cancer therapy. Tong L; Chuang CC; Wu S; Zuo L Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782 [TBL] [Abstract][Full Text] [Related]
11. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism. Sarwar T; Zafaryab M; Husain MA; Ishqi HM; Rehman SU; Rizvi MM; Tabish M Toxicol Appl Pharmacol; 2015 Dec; 289(2):251-61. PubMed ID: 26415834 [TBL] [Abstract][Full Text] [Related]
12. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors. Smith DG; Magwere T; Burchill SA Expert Rev Anticancer Ther; 2011 Feb; 11(2):229-49. PubMed ID: 21342042 [TBL] [Abstract][Full Text] [Related]
13. Redox control of cancer cell destruction. Hegedűs C; Kovács K; Polgár Z; Regdon Z; Szabó É; Robaszkiewicz A; Forman HJ; Martner A; Virág L Redox Biol; 2018 Jun; 16():59-74. PubMed ID: 29477046 [TBL] [Abstract][Full Text] [Related]
14. Selective induction of oxidative stress in cancer cells via synergistic combinations of agents targeting redox homeostasis. Akladios FN; Andrew SD; Parkinson CJ Bioorg Med Chem; 2015 Jul; 23(13):3097-104. PubMed ID: 26022081 [TBL] [Abstract][Full Text] [Related]
15. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity. Jamier V; Ba LA; Jacob C Chemistry; 2010 Sep; 16(36):10920-8. PubMed ID: 20677196 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]
17. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer. Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204 [TBL] [Abstract][Full Text] [Related]
18. Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells. González-Bártulos M; Aceves-Luquero C; Qualai J; Cussó O; Martínez MA; Fernández de Mattos S; Menéndez JA; Villalonga P; Costas M; Ribas X; Massaguer A PLoS One; 2015; 10(9):e0137800. PubMed ID: 26368127 [TBL] [Abstract][Full Text] [Related]
19. Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma Cells and Reduces Growth of Orthotopic Liver Tumors in Rats. Wen X; Reynolds L; Mulik RS; Kim SY; Van Treuren T; Nguyen LH; Zhu H; Corbin IR Gastroenterology; 2016 Feb; 150(2):488-98. PubMed ID: 26484708 [TBL] [Abstract][Full Text] [Related]
20. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase. Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]