These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 1716878)
1. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase exhibit proton translocating activity in the presence of gramicidin. Prochaska LJ; Wilson KS Arch Biochem Biophys; 1991 Oct; 290(1):179-85. PubMed ID: 1716878 [TBL] [Abstract][Full Text] [Related]
2. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities. Wilson KS; Prochaska LJ Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485 [TBL] [Abstract][Full Text] [Related]
3. Biochemical and biophysical properties of purified phospholipid vesicles containing bovine heart cytochrome c oxidase. Nguyen XT; Pabarue HA; Geyer RR; Shroyer LA; Estey LA; Parilo MS; Wilson KS; Prochaska LJ Protein Expr Purif; 2002 Oct; 26(1):122-30. PubMed ID: 12356479 [TBL] [Abstract][Full Text] [Related]
4. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Krab K; Wikström M Biochim Biophys Acta; 1978 Oct; 504(1):200-14. PubMed ID: 30478 [TBL] [Abstract][Full Text] [Related]
5. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by delta micro H+. Papa S; Lorusso M; Boffoli D; Bellomo E Eur J Biochem; 1983 Dec; 137(3):405-12. PubMed ID: 6319123 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase. Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546 [TBL] [Abstract][Full Text] [Related]
7. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles. Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821 [TBL] [Abstract][Full Text] [Related]
8. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity. Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570 [TBL] [Abstract][Full Text] [Related]
9. Characterization of electron transfer and proton translocation activities in trypsin-treated bovine heart mitochondrial cytochrome c oxidase. DiBiase VA; Prochaska LJ Arch Biochem Biophys; 1985 Dec; 243(2):668-77. PubMed ID: 3002279 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113 [TBL] [Abstract][Full Text] [Related]
11. Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Wikström M Nature; 1984 Apr 5-11; 308(5959):558-60. PubMed ID: 6324002 [TBL] [Abstract][Full Text] [Related]
12. Interaction of drugs with a model membrane protein. Effects of local anesthetics on electron transfer and hydrogen ion uptake in ionophore stimulated cytochrome oxidase proteoliposomes. Singer MA Biochem Pharmacol; 1983 May; 32(10):1619-25. PubMed ID: 6305365 [TBL] [Abstract][Full Text] [Related]
13. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site. Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Wikström MK; Saari HT Biochim Biophys Acta; 1977 Nov; 462(2):347-61. PubMed ID: 201286 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers. Papa S; Guerrieri F; Izzo G Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH. Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871 [TBL] [Abstract][Full Text] [Related]
17. Coupling in cytochrome c oxidase. Kessler RJ; Blondin GA; Vande Zander H; Haworth RA; Green DE Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3662-6. PubMed ID: 198794 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry. Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781 [TBL] [Abstract][Full Text] [Related]
19. Biophysical and biochemical characterization of reconstituted and purified Rhodobacter sphaeroides cytochrome c oxidase in phospholipid vesicles sheds insight into its functional oligomeric structure. Cvetkov TL; Prochaska LJ Protein Expr Purif; 2007 Dec; 56(2):189-96. PubMed ID: 17910921 [TBL] [Abstract][Full Text] [Related]
20. The K(+)-ionophores nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase. Steverding D; Kadenbach B J Bioenerg Biomembr; 1990 Apr; 22(2):197-205. PubMed ID: 2158497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]