These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17168787)

  • 1. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties.
    Cornell RB; Taneva SG
    Curr Protein Pept Sci; 2006 Dec; 7(6):539-52. PubMed ID: 17168787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amphipathic helix of an enzyme that regulates phosphatidylcholine synthesis remodels membranes into highly curved nanotubules.
    Taneva SG; Lee JM; Cornell RB
    Biochim Biophys Acta; 2012 May; 1818(5):1173-86. PubMed ID: 22285779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site.
    Huang HK; Taneva SG; Lee J; Silva LP; Schriemer DC; Cornell RB
    J Mol Biol; 2013 May; 425(9):1546-64. PubMed ID: 23238251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 22-mer segment in the structurally pliable regulatory domain of metazoan CTP: phosphocholine cytidylyltransferase facilitates both silencing and activating functions.
    Ding Z; Taneva SG; Huang HK; Campbell SA; Semenec L; Chen N; Cornell RB
    J Biol Chem; 2012 Nov; 287(46):38980-91. PubMed ID: 22988242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The curvature sensitivity of a membrane-binding amphipathic helix can be modulated by the charge on a flanking region.
    Chong SS; Taneva SG; Lee JM; Cornell RB
    Biochemistry; 2014 Jan; 53(3):450-61. PubMed ID: 24397368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix.
    Lee J; Taneva SG; Holland BW; Tieleman DP; Cornell RB
    J Biol Chem; 2014 Jan; 289(3):1742-55. PubMed ID: 24275660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of lipid-associating proteins in a lipid environment.
    Brasseur R; De Loof H; Ruysschaert JM; Rosseneu M
    Biochim Biophys Acta; 1988 Aug; 943(1):95-102. PubMed ID: 3401472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane lipid compositional sensing by the inducible amphipathic helix of CCT.
    Cornell RB
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):847-861. PubMed ID: 26747646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis.
    Cornell RB; Ridgway ND
    Prog Lipid Res; 2015 Jul; 59():147-71. PubMed ID: 26165797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone.
    Doucet CM; Esmery N; de Saint-Jean M; Antonny B
    PLoS One; 2015; 10(9):e0137965. PubMed ID: 26366573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How cytidylyltransferase uses an amphipathic helix to sense membrane phospholipid composition.
    Cornell RB
    Biochem Soc Trans; 1998 Aug; 26(3):539-44. PubMed ID: 9765910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-induced conformational switch in the membrane binding domain of CTP:phosphocholine cytidylyltransferase: a circular dichroism study.
    Taneva S; Johnson JE; Cornell RB
    Biochemistry; 2003 Oct; 42(40):11768-76. PubMed ID: 14529288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Many Faces of Amphipathic Helices.
    Giménez-Andrés M; Čopič A; Antonny B
    Biomolecules; 2018 Jul; 8(3):. PubMed ID: 29976879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair.
    Ramezanpour M; Lee J; Taneva SG; Tieleman DP; Cornell RB
    J Biol Chem; 2018 May; 293(18):7070-7084. PubMed ID: 29519816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations.
    Blood PD; Swenson RD; Voth GA
    Biophys J; 2008 Aug; 95(4):1866-76. PubMed ID: 18469070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphitropic proteins: regulation by reversible membrane interactions (review).
    Johnson JE; Cornell RB
    Mol Membr Biol; 1999; 16(3):217-35. PubMed ID: 10503244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization.
    Cornell RB; Northwood IC
    Trends Biochem Sci; 2000 Sep; 25(9):441-7. PubMed ID: 10973058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both acidic and basic amino acids in an amphitropic enzyme, CTP:phosphocholine cytidylyltransferase, dictate its selectivity for anionic membranes.
    Johnson JE; Xie M; Singh LM; Edge R; Cornell RB
    J Biol Chem; 2003 Jan; 278(1):514-22. PubMed ID: 12401806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.