These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 17168856)
21. [Growth and DNA synthesis inhibition and superoxide anion formation by iminoquinones in Trypanosoma cruzi]. Schwarcz de Tarlovsky MN; Goijman SG; Stoppani AO Rev Argent Microbiol; 1988; 20(4):183-93. PubMed ID: 2854637 [TBL] [Abstract][Full Text] [Related]
22. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Kim GW; Kondo T; Noshita N; Chan PH Stroke; 2002 Mar; 33(3):809-15. PubMed ID: 11872908 [TBL] [Abstract][Full Text] [Related]
23. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL Elife; 2020 Jan; 9():. PubMed ID: 32003744 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. Sugawara T; Noshita N; Lewén A; Gasche Y; Ferrand-Drake M; Fujimura M; Morita-Fujimura Y; Chan PH J Neurosci; 2002 Jan; 22(1):209-17. PubMed ID: 11756504 [TBL] [Abstract][Full Text] [Related]
26. New perspectives for hydrogen peroxide in the amastigogenesis of Trypanosoma cruzi in vitro. Paula JIO; Pinto JDS; Rossini A; Nogueira NP; Paes MC Biochim Biophys Acta Mol Basis Dis; 2020 Dec; 1866(12):165951. PubMed ID: 32861766 [TBL] [Abstract][Full Text] [Related]
27. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. Wilkinson SR; Temperton NJ; Mondragon A; Kelly JM J Biol Chem; 2000 Mar; 275(11):8220-5. PubMed ID: 10713147 [TBL] [Abstract][Full Text] [Related]
28. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. Armstrong JS; Whiteman M; Yang H; Jones DP Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991 [TBL] [Abstract][Full Text] [Related]
30. Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. Matsunaga T; Kotamraju S; Kalivendi SV; Dhanasekaran A; Joseph J; Kalyanaraman B J Biol Chem; 2004 Jul; 279(27):28614-24. PubMed ID: 15102832 [TBL] [Abstract][Full Text] [Related]
31. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
32. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. De Keulenaer GW; Chappell DC; Ishizaka N; Nerem RM; Alexander RW; Griendling KK Circ Res; 1998 Jun; 82(10):1094-101. PubMed ID: 9622162 [TBL] [Abstract][Full Text] [Related]
33. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis. Fukui M; Choi HJ; Zhu BT Toxicol Appl Pharmacol; 2012 Jul; 262(2):156-66. PubMed ID: 22575170 [TBL] [Abstract][Full Text] [Related]
34. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Xiang N; Zhao R; Zhong W Cancer Chemother Pharmacol; 2009 Jan; 63(2):351-62. PubMed ID: 18379781 [TBL] [Abstract][Full Text] [Related]
35. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Chan SH; Wu KL; Wang LL; Chan JY Free Radic Biol Med; 2005 Sep; 39(5):603-18. PubMed ID: 16085179 [TBL] [Abstract][Full Text] [Related]
36. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study. Karoui H; Hogg N; Joseph J; Kalyanaraman B Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis. Iñarrea P; Moini H; Han D; Rettori D; Aguiló I; Alava MA; Iturralde M; Cadenas E Biochem J; 2007 Jul; 405(1):173-9. PubMed ID: 17394422 [TBL] [Abstract][Full Text] [Related]
38. Redox Balance Keepers and Possible Cell Functions Managed by Redox Homeostasis in Mesías AC; Garg NJ; Zago MP Front Cell Infect Microbiol; 2019; 9():435. PubMed ID: 31921709 [TBL] [Abstract][Full Text] [Related]
39. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite. Quijano C; Castro L; Peluffo G; Valez V; Radi R Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3404-14. PubMed ID: 17906108 [TBL] [Abstract][Full Text] [Related]
40. Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4 Moshfegh CM; Collins CW; Gunda V; Vasanthakumar A; Cao JZ; Singh PK; Godley LA; Case AJ Redox Biol; 2019 Oct; 27():101141. PubMed ID: 30819616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]