BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17169166)

  • 1. Ultrastructural findings for the mitochondrial subpopulation of mice skeletal muscle after adrenergic stimulation by clenbuterol.
    Sundal S; Sharma S
    J Physiol Sci; 2007 Feb; 57(1):7-14. PubMed ID: 17169166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and physiologic characteristics of skeletal muscle determine its response to clenbuterol treatment.
    Sundal S; Katoch SS; Sharma S
    Indian J Biochem Biophys; 2006 Jun; 43(3):160-6. PubMed ID: 16967905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clenbuterol treatment stimulates cell proliferation in denervated chick gastrocnemius muscle.
    Katoch SS; Sharma K
    Indian J Exp Biol; 2004 Aug; 42(8):770-5. PubMed ID: 15573525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological evidences of reparative and regenerative effects of beta-adrenoceptor agonists, clenbuterol and isoproterenol, in denervated rat skeletal muscle.
    Katoch SS; Garg A; Sharma S
    Indian J Exp Biol; 2006 Jun; 44(6):448-58. PubMed ID: 16784115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of denervated muscle form and function by clenbuterol in a rat model of peripheral nerve injury.
    Fitton AR; Berry MS; McGregor AD
    J Hand Surg Br; 2001 Aug; 26(4):335-46. PubMed ID: 11469836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deleterious effects of chronic clenbuterol treatment on endurance and sprint exercise performance in rats.
    Duncan ND; Williams DA; Lynch GS
    Clin Sci (Lond); 2000 Mar; 98(3):339-47. PubMed ID: 10677393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the beta 2-adrenergic agonist clenbuterol on capillary geometry in cardiac and skeletal muscles in young and middle-aged rats.
    Suzuki J; Gao M; Xie Z; Koyama T
    Acta Physiol Scand; 1997 Nov; 161(3):317-26. PubMed ID: 9401584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of beta 2-agonist administration and exercise on contractile activation of skeletal muscle fibers.
    Lynch GS; Hayes A; Campbell SP; Williams DA
    J Appl Physiol (1985); 1996 Oct; 81(4):1610-8. PubMed ID: 8904577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle.
    Ploquin C; Chabi B; Fouret G; Vernus B; Feillet-Coudray C; Coudray C; Bonnieu A; Ramonatxo C
    Am J Physiol Endocrinol Metab; 2012 Apr; 302(8):E1000-8. PubMed ID: 22318951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero.
    Downie D; Delday MI; Maltin CA; Sneddon AA
    Mol Reprod Dev; 2008 May; 75(5):785-94. PubMed ID: 17948249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.
    Abo T; Iida RH; Kaneko S; Suga T; Yamada H; Hamada Y; Yamane A
    Cell Biochem Funct; 2012 Dec; 30(8):671-6. PubMed ID: 22696074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clenbuterol in the prevention of muscle atrophy: a study of hindlimb-unweighted rats.
    Herrera NM; Zimmerman AN; Dykstra DD; Thompson LV
    Arch Phys Med Rehabil; 2001 Jul; 82(7):930-4. PubMed ID: 11441380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional and histological effects of clenbuterol on the canine skeletal muscle ventricle.
    Sharif Z; Hammond RL; McDonald P; Vander Heide R; Stephenson LW
    J Surg Res; 2005 Jan; 123(1):89-95. PubMed ID: 15652955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clenbuterol attenuates muscle atrophy and dysfunction in hindlimb-suspended rats.
    Dodd SL; Koesterer TJ
    Aviat Space Environ Med; 2002 Jul; 73(7):635-9. PubMed ID: 12137098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of hybrid-fiber types in rat soleus muscle after clenbuterol administration during hindlimb unloading.
    Picquet F; De-Doncker L; Falempin M
    Can J Physiol Pharmacol; 2004 May; 82(5):311-8. PubMed ID: 15213730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in skeletal muscle gene expression following clenbuterol administration.
    Spurlock DM; McDaneld TG; McIntyre LM
    BMC Genomics; 2006 Dec; 7():320. PubMed ID: 17181869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the beta(2)-agonist clenbuterol on respiratory and limb muscles of weaning rats.
    Polla B; Cappelli V; Morello F; Pellegrino MA; Boschi F; Pastoris O; Reggiani C
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R862-9. PubMed ID: 11171667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice.
    Pellegrino MA; D'Antona G; Bortolotto S; Boschi F; Pastoris O; Bottinelli R; Polla B; Reggiani C
    Exp Physiol; 2004 Jan; 89(1):89-100. PubMed ID: 15109214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-agonist-induced alterations in organ weights and protein content: comparison of racemic clenbuterol and its enantiomers.
    von Deutsch DA; Abukhalaf IK; Wineski LE; Aboul-Enein HY; Pitts SA; Parks BA; Oster RA; Paulsen DF; Potter DE
    Chirality; 2000 Aug; 12(8):637-48. PubMed ID: 10897101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of clenbuterol on growth, carcase and skeletal muscle characteristics in broiler chickens.
    Rehfeldt C; Schadereit R; Weikard R; Reichel K
    Br Poult Sci; 1997 Sep; 38(4):366-73. PubMed ID: 9347144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.