These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17169452)

  • 41. Kinetic analysis of bacterial bioluminescence.
    Kelly CJ; Hsiung CJ; Lajoie CA
    Biotechnol Bioeng; 2003 Feb; 81(3):370-8. PubMed ID: 12474260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth kinetics of Salmonella spp. pre- and post-thermal treatment.
    Juneja VK; Marks HM
    Int J Food Microbiol; 2006 May; 109(1-2):54-9. PubMed ID: 16488038
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium.
    Marín S; Cuevas D; Ramos AJ; Sanchis V
    Int J Food Microbiol; 2008 Jan; 121(2):139-49. PubMed ID: 18031857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
    Prats C; Giró A; Ferrer J; López D; Vives-Rego J
    J Theor Biol; 2008 May; 252(1):56-68. PubMed ID: 18329047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The probability of growth of Listeria monocytogenes in cooked salmon and tryptic soy broth as affected by salt, smoke compound, and storage temperature.
    Hwang CA
    Food Microbiol; 2009 May; 26(3):253-8. PubMed ID: 19269565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study.
    Swinnen IA; Bernaerts K; Gysemans K; Van Impe JF
    Int J Food Microbiol; 2005 Apr; 100(1-3):85-96. PubMed ID: 15854695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.
    Dominguez SA; Schaffner DW
    Int J Food Microbiol; 2007 Dec; 120(3):287-95. PubMed ID: 17949841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef.
    Juneja VK; Marks H; Thippareddi H
    Food Microbiol; 2008 Feb; 25(1):42-55. PubMed ID: 17993376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predictive models for growth of Salmonella typhimurium DT104 from low and high initial density on ground chicken with a natural microflora.
    Oscar TP
    Food Microbiol; 2007 Sep; 24(6):640-51. PubMed ID: 17418316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling using rRNA-structured biomass models.
    Lavallée B; Frigon D; Lessard P; Vanrolleghem PA; Yuan Z; van Loosdrecht MC
    Water Sci Technol; 2009; 59(4):661-71. PubMed ID: 19237760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Survival of Vibrio parahaemolyticus under environmental stresses as influenced by growth phase and pre-adaptation treatment.
    Chiang ML; Chou CC
    Food Microbiol; 2009 Jun; 26(4):391-5. PubMed ID: 19376460
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods.
    Ross EW; Taub IA; Doona CJ; Feeherry FE; Kustin K
    Int J Food Microbiol; 2005 Mar; 99(2):157-71. PubMed ID: 15734564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of starvation length upon microbial activity in a biomass recycle reactor.
    Konopka A; Zakharova T; Nakatsu C
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):286-91. PubMed ID: 12407465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effect of a beryllium complex on growth of Pseudomonas fluorescens (types R and S). I. Influence on the lag phase].
    MacCordick J; Hornsperger JM; Wurtz B
    C R Seances Soc Biol Fil; 1975; 169(2):415-21. PubMed ID: 126778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature.
    Yang ZQ; Jiao XA; Li P; Pan ZM; Huang JL; Gu RX; Fang WM; Chao GX
    Food Microbiol; 2009 Sep; 26(6):606-14. PubMed ID: 19527836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase.
    Prats C; López D; Giró A; Ferrer J; Valls J
    J Theor Biol; 2006 Aug; 241(4):939-53. PubMed ID: 16524598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):89-100. PubMed ID: 18835500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P
    Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of distributions for fitting lag times of individual cells in bacterial populations.
    McKellar RC; Hawke A
    Int J Food Microbiol; 2006 Feb; 106(2):169-75. PubMed ID: 16242199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.