BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17169990)

  • 1. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair.
    Reynolds M; Stoddard L; Bespalov I; Zhitkovich A
    Nucleic Acids Res; 2007; 35(2):465-76. PubMed ID: 17169990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.
    Quievryn G; Peterson E; Messer J; Zhitkovich A
    Biochemistry; 2003 Feb; 42(4):1062-70. PubMed ID: 12549927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WRN helicase promotes repair of DNA double-strand breaks caused by aberrant mismatch repair of chromium-DNA adducts.
    Zecevic A; Menard H; Gurel V; Hagan E; DeCaro R; Zhitkovich A
    Cell Cycle; 2009 Sep; 8(17):2769-78. PubMed ID: 19652551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular vitamin C increases chromate toxicity via a death program requiring mismatch repair but not p53.
    Reynolds M; Zhitkovich A
    Carcinogenesis; 2007 Jul; 28(7):1613-20. PubMed ID: 17301063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers.
    Reynolds MF; Peterson-Roth EC; Bespalov IA; Johnston T; Gurel VM; Menard HL; Zhitkovich A
    Cancer Res; 2009 Feb; 69(3):1071-9. PubMed ID: 19141647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Undetectable role of oxidative DNA damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with restored ascorbate levels.
    Reynolds M; Armknecht S; Johnston T; Zhitkovich A
    Mutagenesis; 2012 Jul; 27(4):437-43. PubMed ID: 22241526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ; Ceryak S; Patierno SR
    Mutat Res; 2003 Dec; 533(1-2):3-36. PubMed ID: 14643411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage.
    Peterson-Roth E; Reynolds M; Quievryn G; Zhitkovich A
    Mol Cell Biol; 2005 May; 25(9):3596-607. PubMed ID: 15831465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.
    DeLoughery Z; Luczak MW; Ortega-Atienza S; Zhitkovich A
    Toxicol Sci; 2015 Jan; 143(1):54-63. PubMed ID: 25288669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower mutagenicity but higher stability of Cr-DNA adducts formed during gradual chromate activation with ascorbate.
    Quievryn G; Messer J; Zhitkovich A
    Carcinogenesis; 2006 Nov; 27(11):2316-21. PubMed ID: 16714765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
    Mishra M; Sharma A; Negi MP; Dwivedi UN; Chowdhuri DK
    Mutat Res; 2011 May; 722(1):44-51. PubMed ID: 21382505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium.
    Blasiak J; Kowalik J
    Mutat Res; 2000 Aug; 469(1):135-45. PubMed ID: 10946250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium in drinking water: sources, metabolism, and cancer risks.
    Zhitkovich A
    Chem Res Toxicol; 2011 Oct; 24(10):1617-29. PubMed ID: 21766833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of Cr(VI) by ascorbate but not glutathione is a low oxidant-generating process.
    Wong V; Armknecht S; Zhitkovich A
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):192-6. PubMed ID: 22572042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium genotoxicity: A double-edged sword.
    Nickens KP; Patierno SR; Ceryak S
    Chem Biol Interact; 2010 Nov; 188(2):276-88. PubMed ID: 20430016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI).
    McCarroll N; Keshava N; Chen J; Akerman G; Kligerman A; Rinde E
    Environ Mol Mutagen; 2010 Mar; 51(2):89-111. PubMed ID: 19708067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity.
    Pattison DI; Davies MJ; Levina A; Dixon NE; Lay PA
    Chem Res Toxicol; 2001 May; 14(5):500-10. PubMed ID: 11368547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity.
    Sobol Z; Schiestl RH
    Environ Mol Mutagen; 2012 Mar; 53(2):94-100. PubMed ID: 22020802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective.
    Speer RM; Wise SS; Croom-Perez TJ; Aboueissa AM; Martin-Bras M; Barandiaran M; Bermúdez E; Wise JP
    Toxicol Appl Pharmacol; 2019 Aug; 376():70-81. PubMed ID: 31108106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical mechanisms of DNA damage by carcinogenic chromium(VI).
    Krawic C; Zhitkovich A
    Adv Pharmacol; 2023; 96():25-46. PubMed ID: 36858775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.