These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 17170133)
1. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Minczuk M; Papworth MA; Kolasinska P; Murphy MP; Klug A Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19689-94. PubMed ID: 17170133 [TBL] [Abstract][Full Text] [Related]
2. Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Minczuk M; Kolasinska-Zwierz P; Murphy MP; Papworth MA Nat Protoc; 2010 Feb; 5(2):342-56. PubMed ID: 20134433 [TBL] [Abstract][Full Text] [Related]
3. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Minczuk M; Papworth MA; Miller JC; Murphy MP; Klug A Nucleic Acids Res; 2008 Jul; 36(12):3926-38. PubMed ID: 18511461 [TBL] [Abstract][Full Text] [Related]
4. High mitochondrial DNA T8993G mutation (<90%) without typical features of Leigh's and NARP syndromes. Tsao CY; Mendell JR; Bartholomew D J Child Neurol; 2001 Jul; 16(7):533-5. PubMed ID: 11453454 [TBL] [Abstract][Full Text] [Related]
5. In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. Nomura W; Barbas CF J Am Chem Soc; 2007 Jul; 129(28):8676-7. PubMed ID: 17583340 [No Abstract] [Full Text] [Related]
6. A common DNA-binding site for SZF1 and the BRCA1-associated zinc finger protein, ZBRK1. Peng H; Zheng L; Lee WH; Rux JJ; Rauscher FJ Cancer Res; 2002 Jul; 62(13):3773-81. PubMed ID: 12097288 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. Gammage PA; Rorbach J; Vincent AI; Rebar EJ; Minczuk M EMBO Mol Med; 2014 Apr; 6(4):458-66. PubMed ID: 24567072 [TBL] [Abstract][Full Text] [Related]
8. The use of mitochondria-targeted endonucleases to manipulate mtDNA. Bacman SR; Williams SL; Pinto M; Moraes CT Methods Enzymol; 2014; 547():373-97. PubMed ID: 25416366 [TBL] [Abstract][Full Text] [Related]
9. Segregation of mitochondrial DNA (mtDNA) in human oocytes and in animal models of mtDNA disease: clinical implications. Poulton J; Marchington DR Reproduction; 2002 Jun; 123(6):751-5. PubMed ID: 12052229 [TBL] [Abstract][Full Text] [Related]
10. Engineered zinc finger proteins that respond to DNA modification by HaeIII and HhaI methyltransferase enzymes. Isalan M; Choo Y J Mol Biol; 2000 Jan; 295(3):471-7. PubMed ID: 10623539 [TBL] [Abstract][Full Text] [Related]
11. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Mattiazzi M; Vijayvergiya C; Gajewski CD; DeVivo DC; Lenaz G; Wiedmann M; Manfredi G Hum Mol Genet; 2004 Apr; 13(8):869-79. PubMed ID: 14998933 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells. D'Aurelio M; Vives-Bauza C; Davidson MM; Manfredi G Hum Mol Genet; 2010 Jan; 19(2):374-86. PubMed ID: 19875463 [TBL] [Abstract][Full Text] [Related]
13. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system. Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662 [TBL] [Abstract][Full Text] [Related]
14. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Gammage PA; Gaude E; Van Haute L; Rebelo-Guiomar P; Jackson CB; Rorbach J; Pekalski ML; Robinson AJ; Charpentier M; Concordet JP; Frezza C; Minczuk M Nucleic Acids Res; 2016 Sep; 44(16):7804-16. PubMed ID: 27466392 [TBL] [Abstract][Full Text] [Related]
15. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. Tanaka M; Borgeld HJ; Zhang J; Muramatsu S; Gong JS; Yoneda M; Maruyama W; Naoi M; Ibi T; Sahashi K; Shamoto M; Fuku N; Kurata M; Yamada Y; Nishizawa K; Akao Y; Ohishi N; Miyabayashi S; Umemoto H; Muramatsu T; Furukawa K; Kikuchi A; Nakano I; Ozawa K; Yagi K J Biomed Sci; 2002; 9(6 Pt 1):534-41. PubMed ID: 12372991 [TBL] [Abstract][Full Text] [Related]
17. ZifBASE: a database of zinc finger proteins and associated resources. Jayakanthan M; Muthukumaran J; Chandrasekar S; Chawla K; Punetha A; Sundar D BMC Genomics; 2009 Sep; 10():421. PubMed ID: 19737425 [TBL] [Abstract][Full Text] [Related]
18. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Klug A Q Rev Biophys; 2010 Feb; 43(1):1-21. PubMed ID: 20478078 [TBL] [Abstract][Full Text] [Related]
19. NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Rojo A; Campos Y; Sánchez JM; Bonaventura I; Aguilar M; García A; González L; Rey MJ; Arenas J; Olivé M; Ferrer I Acta Neuropathol; 2006 Jun; 111(6):610-6. PubMed ID: 16525806 [TBL] [Abstract][Full Text] [Related]
20. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Muratovska A; Lightowlers RN; Taylor RW; Turnbull DM; Smith RA; Wilce JA; Martin SW; Murphy MP Nucleic Acids Res; 2001 May; 29(9):1852-63. PubMed ID: 11328868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]