BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17170151)

  • 1. Analyzing the effect of wind on flight: pitfalls and solutions.
    Shamoun-Baranes J; van Loon E; Liechti F; Bouten W
    J Exp Biol; 2007 Jan; 210(Pt 1):82-90. PubMed ID: 17170151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.
    Schmaljohann H; Liechti F
    J Exp Biol; 2009 Nov; 212(Pt 22):3633-42. PubMed ID: 19880724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal stopover decisions under wind influence: the effects of correlated winds.
    Weber TP; Hedenström A
    J Theor Biol; 2000 Jul; 205(1):95-104. PubMed ID: 10860703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed stability in birds.
    Sachs G
    Math Biosci; 2009 May; 219(1):1-6. PubMed ID: 19146863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).
    Barron A; Srinivasan MV
    J Exp Biol; 2006 Mar; 209(Pt 5):978-84. PubMed ID: 16481586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?
    Bundle MW; Hansen KS; Dial KP
    J Exp Biol; 2007 Mar; 210(Pt 6):1075-83. PubMed ID: 17337719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot.
    Jenni-Eiermann S; Hasselquist D; Lindström A; Koolhaas A; Piersma T
    Gen Comp Endocrinol; 2009; 164(2-3):101-6. PubMed ID: 19481083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic influence on gull flight strategy selection.
    Shamoun-Baranes J; van Loon E
    J Exp Biol; 2006 Sep; 209(Pt 18):3489-98. PubMed ID: 16943489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic power of European starlings Sturnus vulgaris during flight in a wind tunnel, estimated from heat transfer modelling, doubly labelled water and mask respirometry.
    Ward S; Möller U; Rayner JM; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 2004 Nov; 207(Pt 24):4291-8. PubMed ID: 15531650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the importance of radiative heat exchange during nocturnal flight in birds.
    Léger J; Larochelle J
    J Exp Biol; 2006 Jan; 209(Pt 1):103-14. PubMed ID: 16354782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer.
    Edwards AM; Phillips RA; Watkins NW; Freeman MP; Murphy EJ; Afanasyev V; Buldyrev SV; da Luz MG; Raposo EP; Stanley HE; Viswanathan GM
    Nature; 2007 Oct; 449(7165):1044-8. PubMed ID: 17960243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents.
    Stefanescu C; Alarcón M; Avila A
    J Anim Ecol; 2007 Sep; 76(5):888-98. PubMed ID: 17714267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind effects on bounding flight.
    Sachs G
    J Theor Biol; 2013 Jan; 316():35-41. PubMed ID: 22981923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z; Nagy M; Leven S; Vicsek T
    Bioinspir Biomim; 2010 Dec; 5(4):045003. PubMed ID: 21098957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New modeling approach for bounding flight in birds.
    Sachs G; Lenz J
    Math Biosci; 2011 Dec; 234(2):75-83. PubMed ID: 21875602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.