BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17170156)

  • 1. Dual mechanisms for nitric oxide control of large arteries in the estuarine crocodile Crocodylus porosus.
    Broughton BR; Donald JA
    J Exp Biol; 2007 Jan; 210(Pt 1):129-37. PubMed ID: 17170156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular distribution of nitric oxide synthase and vasodilation in the Australian lungfish, Neoceratodus forsteri.
    Jennings BL; Blake RE; Joss JM; Donald JA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):590-5. PubMed ID: 18692149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide control of the dorsal aorta and the intestinal vein of the Australian short-finned eel Anguilla australis.
    Jennings BL; Broughton BR; Donald JA
    J Exp Biol; 2004 Mar; 207(Pt 8):1295-303. PubMed ID: 15010480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries.
    Drouin A; Thorin-Trescases N; Hamel E; Falck JR; Thorin E
    Cardiovasc Res; 2007 Jan; 73(1):73-81. PubMed ID: 17113574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide-mediated nonadrenergic noncholinergic relaxation of piglet pulmonary arteries decreases with postnatal age.
    Gonzáles-Luis G; Fletcher AJ; Moreno L; Pérez-Vizcaíno F; Blanco CE; Villamor E
    J Physiol Pharmacol; 2007 Mar; 58(1):45-56. PubMed ID: 17440225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation by NO of acetylcholine release in the ileum of wild-type and NOS gene knockout mice.
    Mang CF; Truempler S; Erbelding D; Kilbinger H
    Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1132-8. PubMed ID: 12381527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysimachia clethroides extract promote vascular relaxation via endothelium-dependent mechanism.
    Lee JO; Chang K; Kim CY; Jung SH; Lee SW; Oak MH
    J Cardiovasc Pharmacol; 2010 May; 55(5):481-8. PubMed ID: 20164788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide control of lower vertebrate blood vessels by vasomotor nerves.
    Donald JA; Broughton BR
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):188-97. PubMed ID: 16139537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cerebral neurogenic vasodilation by L-glutamine and nitric oxide synthase inhibitors and its reversal by L-citrulline.
    Lee TJ; Sarwinski S; Ishine T; Lai CC; Chen FY
    J Pharmacol Exp Ther; 1996 Feb; 276(2):353-8. PubMed ID: 8632296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylcysteine-induced vasodilation involves voltage-gated potassium channels in rat aorta.
    Han WQ; Zhu DL; Wu LY; Chen QZ; Guo SJ; Gao PJ
    Life Sci; 2009 May; 84(21-22):732-7. PubMed ID: 19268479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery.
    Leo MD; Siddegowda YK; Kumar D; Tandan SK; Sastry KV; Prakash VR; Mishra SK
    Eur J Pharmacol; 2008 Oct; 596(1-3):111-7. PubMed ID: 18713623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying relaxation of rabbit aorta by BAY 41-2272, a nitric oxide-independent soluble guanylate cyclase activator.
    Priviero FB; Baracat JS; Teixeira CE; Claudino MA; De Nucci G; Antunes E
    Clin Exp Pharmacol Physiol; 2005 Sep; 32(9):728-34. PubMed ID: 16173929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of relaxing response induced by rat/mouse hemokinin-1 in porcine coronary arteries: roles of potassium ion and nitric oxide.
    Long Y; Fu CY; Tian XZ; Chen J; Han M; Wang R
    Eur J Pharmacol; 2007 Aug; 569(1-2):119-25. PubMed ID: 17560993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium negatively modulates the vascular relaxation induced by nitric oxide donor, due to uncoupling NO synthase.
    Bonaventura D; Lunardi CN; Rodrigues GJ; Neto MA; Vercesi JA; de Lima RG; da Silva RS; Bendhack LM
    J Inorg Biochem; 2009 Oct; 103(10):1366-74. PubMed ID: 19699534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide control of large veins in the toad Bufo marinus.
    Broughton BR; Donald JA
    J Comp Physiol B; 2005 Apr; 175(3):157-66. PubMed ID: 15690177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide, a potent vasodilator of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus.
    Axelsson M; Olsson C; Gibbins I; Holmgren S; Franklin CE
    Gen Comp Endocrinol; 2001 May; 122(2):198-204. PubMed ID: 11316425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of nitric oxide-mediated, neurogenic vasodilation in mesenteric resistance arteries of toad Bufo marinus.
    Jennings BL; Donald JA
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R767-75. PubMed ID: 20071617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thromboxane prostanoid receptor activation impairs endothelial nitric oxide-dependent vasorelaxations: the role of Rho kinase.
    Liu CQ; Leung FP; Wong SL; Wong WT; Lau CW; Lu L; Yao X; Yao T; Huang Y
    Biochem Pharmacol; 2009 Aug; 78(4):374-81. PubMed ID: 19409373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria.
    Herring N; Golding S; Paterson DJ
    J Mol Cell Cardiol; 2000 Oct; 32(10):1795-804. PubMed ID: 11013124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vasorelaxing effect of CGRP and natriuretic peptides in isolated bovine retinal arteries.
    Boussery K; Delaey C; Van de Voorde J
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1420-7. PubMed ID: 15790910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.