BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17170749)

  • 41. Endocytosis targets exogenous material selectively to cathepsin S in live human dendritic cells, while cell-penetrating peptides mediate nonselective transport to cysteine cathepsins.
    Reich M; van Swieten PF; Sommandas V; Kraus M; Fischer R; Weber E; Kalbacher H; Overkleeft HS; Driessen C
    J Leukoc Biol; 2007 Apr; 81(4):990-1001. PubMed ID: 17261546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of small molecule inhibitors and probes of human SUMO deconjugating proteases.
    Albrow VE; Ponder EL; Fasci D; Békés M; Deu E; Salvesen GS; Bogyo M
    Chem Biol; 2011 Jun; 18(6):722-32. PubMed ID: 21700208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolutionary lines of cysteine peptidases.
    Barrett AJ; Rawlings ND
    Biol Chem; 2001 May; 382(5):727-33. PubMed ID: 11517925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activity-based profiling of proteases.
    Sanman LE; Bogyo M
    Annu Rev Biochem; 2014; 83():249-73. PubMed ID: 24905783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation.
    Keller N; Mares J; Zerbe O; Grütter MG
    Structure; 2009 Mar; 17(3):438-48. PubMed ID: 19278658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases.
    Frydrych I; Mlejnek P
    J Cell Biochem; 2008 Apr; 103(5):1646-56. PubMed ID: 17879947
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro Use of Peptide Based Substrates and Inhibitors of Apoptotic Caspases.
    McStay GP
    Methods Mol Biol; 2016; 1419():57-67. PubMed ID: 27108431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective detection and inhibition of active caspase-3 in cells with optimized peptides.
    Vickers CJ; González-Páez GE; Wolan DW
    J Am Chem Soc; 2013 Aug; 135(34):12869-76. PubMed ID: 23915420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activity-based fingerprinting and inhibitor discovery of cysteine proteases in a microarray.
    Uttamchandani M; Liu K; Panicker RC; Yao SQ
    Chem Commun (Camb); 2007 Apr; (15):1518-20. PubMed ID: 17406693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel photoaffinity-based probe for selective detection of cathepsin L active form.
    Torkar A; Bregant S; Devel L; Novinec M; Lenarčič B; Lah T; Dive V
    Chembiochem; 2012 Nov; 13(17):2616-21. PubMed ID: 23125066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Site-selective and nondestructive protein labeling through azaelectrocyclization-induced cascade reactions.
    Tanaka K; Fujii Y; Fukase K
    Chembiochem; 2008 Oct; 9(15):2392-7. PubMed ID: 18821553
    [No Abstract]   [Full Text] [Related]  

  • 53. Caspases: determination of their activities in apoptotic cells.
    Vaculova A; Zhivotovsky B
    Methods Enzymol; 2008; 442():157-81. PubMed ID: 18662569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C.
    Yuan F; Verhelst SH; Blum G; Coussens LM; Bogyo M
    J Am Chem Soc; 2006 May; 128(17):5616-7. PubMed ID: 16637611
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis, antiviral activity, and conformational studies of a P3 aza-peptide analog of a potent macrocyclic tripeptide HCV protease inhibitor.
    Randolph JT; Zhang X; Huang PP; Klein LL; Kurtz KA; Konstantinidis AK; He W; Kati WM; Kempf DJ
    Bioorg Med Chem Lett; 2008 Apr; 18(8):2745-50. PubMed ID: 18375121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases.
    Sadaghiani AM; Verhelst SH; Gocheva V; Hill K; Majerova E; Stinson S; Joyce JA; Bogyo M
    Chem Biol; 2007 May; 14(5):499-511. PubMed ID: 17524981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase.
    Han L; Hiratake J; Kamiyama A; Sakata K
    Biochemistry; 2007 Feb; 46(5):1432-47. PubMed ID: 17260973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-guided design of substituted aza-benzimidazoles as potent hypoxia inducible factor-1alpha prolyl hydroxylase-2 inhibitors.
    Frohn M; Viswanadhan V; Pickrell AJ; Golden JE; Muller KM; Bürli RW; Biddlecome G; Yoder SC; Rogers N; Dao JH; Hungate R; Allen JR
    Bioorg Med Chem Lett; 2008 Sep; 18(18):5023-6. PubMed ID: 18755588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases.
    Wang G; Mahesh U; Chen GY; Yao SQ
    Org Lett; 2003 Mar; 5(5):737-40. PubMed ID: 12605503
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of the caspases.
    Stennicke HR; Salvesen GS
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):17-31. PubMed ID: 9748481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.