BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17171341)

  • 1. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas.
    Larios R; Fernández-Martínez R; Lehecho I; Rucandio I
    Sci Total Environ; 2012 Jan; 414():600-7. PubMed ID: 22154482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile arsenic species in unpolluted and polluted soils.
    Huang JH; Matzner E
    Sci Total Environ; 2007 May; 377(2-3):308-18. PubMed ID: 17391732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methodological approach for the identification of arsenic bearing phases in polluted soils.
    Matera V; Le Hécho I; Laboudigue A; Thomas P; Tellier S; Astruc M
    Environ Pollut; 2003; 126(1):51-64. PubMed ID: 12860102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.
    Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C
    Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain).
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio MI
    Environ Pollut; 2006 Jul; 142(2):217-26. PubMed ID: 16360254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Land-ocean contributions of arsenic through a river-estuary-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin.
    Costas M; Prego R; Filgueiras AV; Bendicho C
    Sci Total Environ; 2011 Dec; 412-413():304-14. PubMed ID: 22078370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).
    Protano G; Nannoni F
    Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area.
    Sierra C; Menéndez-Aguado JM; Afif E; Carrero M; Gallego JR
    J Hazard Mater; 2011 Nov; 196():93-100. PubMed ID: 21943924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T
    Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus.
    Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA
    Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area.
    Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P
    Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenopyrite weathering under conditions of simulated calcareous soil.
    Lara RH; Velázquez LJ; Vazquez-Arenas J; Mallet M; Dossot M; Labastida I; Sosa-Rodríguez FS; Espinosa-Cristóbal LF; Escobedo-Bretado MA; Cruz R
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3681-706. PubMed ID: 26498805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.