These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17172309)

  • 1. Force-extension measurements on bacterial flagella: triggering polymorphic transformations.
    Darnton NC; Berg HC
    Biophys J; 2007 Mar; 92(6):2230-6. PubMed ID: 17172309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-extension curves of bacterial flagella.
    Vogel R; Stark H
    Eur Phys J E Soft Matter; 2010 Nov; 33(3):259-71. PubMed ID: 21046183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for stretching elastic biopolymers which exhibit conformational transformations.
    Haverkamp RG; Marshall AT; Williams MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021907. PubMed ID: 17358367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of bacterial flagellar filaments, and aspects of their conversion to different helical forms.
    Calladine CR
    Symp Soc Exp Biol; 1982; 35():33-51. PubMed ID: 6764043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphic transition in bacterial flagella.
    Kamiya R; Hotani H; Asakura S
    Symp Soc Exp Biol; 1982; 35():53-76. PubMed ID: 6764048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum model for polymorphism of bacterial flagella.
    Srigiriraju SV; Powers TR
    Phys Rev Lett; 2005 Jun; 94(24):248101. PubMed ID: 16090580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotation-induced polymorphic transitions in bacterial flagella.
    Vogel R; Stark H
    Phys Rev Lett; 2013 Apr; 110(15):158104. PubMed ID: 25167316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mesoscopic model for helical bacterial flagella.
    Friedrich B
    J Math Biol; 2006 Jul; 53(1):162-78. PubMed ID: 16791653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid.
    Ko W; Lim S; Lee W; Kim Y; Berg HC; Peskin CS
    Phys Rev E; 2017 Jun; 95(6-1):063106. PubMed ID: 28709256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulling geometry-induced errors in single molecule force spectroscopy measurements.
    Ke C; Jiang Y; Rivera M; Clark RL; Marszalek PE
    Biophys J; 2007 May; 92(9):L76-8. PubMed ID: 17324999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model for polymorphic transitions in bacterial flagella.
    Srigiriraju SV; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011902. PubMed ID: 16486180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplying optical tweezers force using a micro-lever.
    Lin CL; Lee YH; Lin CT; Liu YJ; Hwang JL; Chung TT; Baldeck PL
    Opt Express; 2011 Oct; 19(21):20604-9. PubMed ID: 21997068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor-driven bacterial flagella and buckling instabilities.
    Vogel R; Stark H
    Eur Phys J E Soft Matter; 2012 Feb; 35(2):15. PubMed ID: 22395533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.
    Wen JD; Manosas M; Li PT; Smith SB; Bustamante C; Ritort F; Tinoco I
    Biophys J; 2007 May; 92(9):2996-3009. PubMed ID: 17293410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the bacterial flagellum by an elastic network of rigid bodies.
    Speier C; Vogel R; Stark H
    Phys Biol; 2011 Aug; 8(4):046009. PubMed ID: 21775780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deletion variant study of the functional role of the Salmonella flagellin hypervariable domain region in motility.
    Malapaka RR; Adebayo LO; Tripp BC
    J Mol Biol; 2007 Jan; 365(4):1102-16. PubMed ID: 17109884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments.
    Manosas M; Wen JD; Li PT; Smith SB; Bustamante C; Tinoco I; Ritort F
    Biophys J; 2007 May; 92(9):3010-21. PubMed ID: 17293409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-dependent fragility in RNA hairpins.
    Manosas M; Collin D; Ritort F
    Phys Rev Lett; 2006 Jun; 96(21):218301. PubMed ID: 16803276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The elastic basis for the shape of Borrelia burgdorferi.
    Dombrowski C; Kan W; Motaleb MA; Charon NW; Goldstein RE; Wolgemuth CW
    Biophys J; 2009 Jun; 96(11):4409-17. PubMed ID: 19486665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.