These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 17172354)
1. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Liu CJ; Deavours BE; Richard SB; Ferrer JL; Blount JW; Huhman D; Dixon RA; Noel JP Plant Cell; 2006 Dec; 18(12):3656-69. PubMed ID: 17172354 [TBL] [Abstract][Full Text] [Related]
2. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Akashi T; VanEtten HD; Sawada Y; Wasmann CC; Uchiyama H; Ayabe S Phytochemistry; 2006 Dec; 67(23):2525-30. PubMed ID: 17067644 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Kaimoyo E; VanEtten HD Phytochemistry; 2008 Jan; 69(1):76-87. PubMed ID: 17707445 [TBL] [Abstract][Full Text] [Related]
4. cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Akashi T; Sawada Y; Shimada N; Sakurai N; Aoki T; Ayabe S Plant Cell Physiol; 2003 Feb; 44(2):103-12. PubMed ID: 12610212 [TBL] [Abstract][Full Text] [Related]
5. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Wu Q; VanEtten HD Mol Plant Microbe Interact; 2004 Jul; 17(7):798-804. PubMed ID: 15242174 [TBL] [Abstract][Full Text] [Related]
6. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Wu Q; Preisig CL; VanEtten HD Plant Mol Biol; 1997 Nov; 35(5):551-60. PubMed ID: 9349277 [TBL] [Abstract][Full Text] [Related]
7. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. He XZ; Reddy JT; Dixon RA Plant Mol Biol; 1998 Jan; 36(1):43-54. PubMed ID: 9484461 [TBL] [Abstract][Full Text] [Related]
8. Induction of 6a-hydroxymaackiain 3-O-methyltransferase and phenylalanine ammonia-lyase mRNA translational activities during the biosynthesis of pisatin. Preisig CL; VanEtten HD; Moreau RA Arch Biochem Biophys; 1991 Nov; 290(2):468-73. PubMed ID: 1929414 [TBL] [Abstract][Full Text] [Related]
9. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Zubieta C; He XZ; Dixon RA; Noel JP Nat Struct Biol; 2001 Mar; 8(3):271-9. PubMed ID: 11224575 [TBL] [Abstract][Full Text] [Related]
10. (+)-Pisatin biosynthesis: from (-) enantiomeric intermediates via an achiral 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene. Celoy RM; VanEtten HD Phytochemistry; 2014 Feb; 98():120-7. PubMed ID: 24332213 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Djordjevic S; Stock AM Structure; 1997 Apr; 5(4):545-58. PubMed ID: 9115443 [TBL] [Abstract][Full Text] [Related]
12. Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates. DiCenzo GL; VanEtten HD Phytochemistry; 2006 Apr; 67(7):675-83. PubMed ID: 16504226 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111 [TBL] [Abstract][Full Text] [Related]
14. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. He XZ; Dixon RA Plant Cell; 2000 Sep; 12(9):1689-702. PubMed ID: 11006341 [TBL] [Abstract][Full Text] [Related]
15. Affinity chromatography, substrate/product specificity, and amino acid sequence analysis of an isoflavone O-methyltransferase from alfalfa (Medicago sativa L.). He XZ; Dixon RA Arch Biochem Biophys; 1996 Dec; 336(1):121-9. PubMed ID: 8951042 [TBL] [Abstract][Full Text] [Related]
16. Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Liu CJ; Dixon RA Plant Cell; 2001 Dec; 13(12):2643-58. PubMed ID: 11752378 [TBL] [Abstract][Full Text] [Related]
17. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Kaimoyo E; Farag MA; Sumner LW; Wasmann C; Cuello JL; VanEtten H Biotechnol Prog; 2008; 24(2):377-84. PubMed ID: 18331050 [TBL] [Abstract][Full Text] [Related]
19. Structural analysis of coniferyl alcohol 9-O-methyltransferase from Linum nodiflorum reveals a novel active-site environment. Wolters S; Neeb M; Berim A; Schulze Wischeler J; Petersen M; Heine A Acta Crystallogr D Biol Crystallogr; 2013 May; 69(Pt 5):888-900. PubMed ID: 23633600 [TBL] [Abstract][Full Text] [Related]
20. Methylation of sulfhydryl groups: a new function for a family of small molecule plant O-methyltransferases. Coiner H; Schröder G; Wehinger E; Liu CJ; Noel JP; Schwab W; Schröder J Plant J; 2006 Apr; 46(2):193-205. PubMed ID: 16623883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]