BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 17172433)

  • 1. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells.
    Agarwal C; Tyagi A; Agarwal R
    Mol Cancer Ther; 2006 Dec; 5(12):3294-302. PubMed ID: 17172433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells.
    Tyagi A; Singh RP; Agarwal C; Siriwardana S; Sclafani RA; Agarwal R
    Carcinogenesis; 2005 Nov; 26(11):1978-87. PubMed ID: 15975956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation.
    Kaur M; Agarwal R; Agarwal C
    Mol Cancer Ther; 2006 May; 5(5):1265-74. PubMed ID: 16731759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3β release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells.
    Ou TT; Wang CJ; Lee YS; Wu CH; Lee HJ
    Mol Nutr Food Res; 2010 Dec; 54(12):1781-90. PubMed ID: 20564478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the role of ATM-Chk2-Cdc25A and ATM-p53-p21-pathways.
    Gaul L; Mandl-Weber S; Baumann P; Emmerich B; Schmidmaier R
    J Cancer Res Clin Oncol; 2008 Feb; 134(2):245-53. PubMed ID: 17653574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells.
    Ray S; Shyam S; Fraizer GC; Almasan A
    Mol Cancer Ther; 2007 Apr; 6(4):1368-78. PubMed ID: 17431115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways.
    Ouyang G; Yao L; Ruan K; Song G; Mao Y; Bao S
    Cell Biol Int; 2009 Dec; 33(12):1237-44. PubMed ID: 19732843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol metabolism activates cell cycle checkpoint kinase, Chk2.
    Clemens DL; Schneider KJ; Nuss RF
    Alcohol; 2011 Dec; 45(8):785-93. PubMed ID: 21924579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kotomolide A arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells.
    Chen CY; Hsu YL; Tsai YC; Kuo PL
    Food Chem Toxicol; 2008 Jul; 46(7):2476-84. PubMed ID: 18511169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21waf1/cip1 and Wee1.
    Chang KL; Kung ML; Chow NH; Su SJ
    Biochem Pharmacol; 2004 Feb; 67(4):717-26. PubMed ID: 14757171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C.
    Singh SV; Herman-Antosiewicz A; Singh AV; Lew KL; Srivastava SK; Kamath R; Brown KD; Zhang L; Baskaran R
    J Biol Chem; 2004 Jun; 279(24):25813-22. PubMed ID: 15073169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity.
    Zhou BB; Chaturvedi P; Spring K; Scott SP; Johanson RA; Mishra R; Mattern MR; Winkler JD; Khanna KK
    J Biol Chem; 2000 Apr; 275(14):10342-8. PubMed ID: 10744722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase.
    Jin J; Ang XL; Ye X; Livingstone M; Harper JW
    J Biol Chem; 2008 Jul; 283(28):19322-8. PubMed ID: 18480045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation.
    Lee JG; Kim JH; Ahn JH; Lee KT; Baek NI; Choi JH
    Food Chem Toxicol; 2013 May; 55():214-21. PubMed ID: 23274058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of G2/M arrest by pseudolaric acid B is mediated by activation of the ATM signaling pathway.
    Meng AG; Jiang LL
    Acta Pharmacol Sin; 2009 Apr; 30(4):442-50. PubMed ID: 19305423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death.
    Wang G; Li X; Huang F; Zhao J; Ding H; Cunningham C; Coad JE; Flynn DC; Reed E; Li QQ
    Cell Mol Life Sci; 2005 Apr; 62(7-8):881-93. PubMed ID: 15868411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM-Chk1/2-Cdc25C pathway.
    Ma YC; Su N; Shi XJ; Zhao W; Ke Y; Zi X; Zhao NM; Qin YH; Zhao HW; Liu HM
    Toxicol Appl Pharmacol; 2015 Jan; 282(2):227-36. PubMed ID: 25450480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The relationship between ATM gene silence inducing apoptosis susceptibility and abnormal CDK activity].
    Zhou JF; Tang Y; Liu WL; Sun HY; Hu JB; Gong JP
    Zhonghua Xue Ye Xue Za Zhi; 2003 Feb; 24(2):90-3. PubMed ID: 12697104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin.
    Deep G; Singh RP; Agarwal C; Kroll DJ; Agarwal R
    Oncogene; 2006 Feb; 25(7):1053-69. PubMed ID: 16205633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testosterone promotes DNA damage response under oxidative stress in prostate cancer cell lines.
    Ide H; Lu Y; Yu J; China T; Kumamoto T; Koseki T; Yamaguchi R; Muto S; Horie S
    Prostate; 2012 Sep; 72(13):1407-11. PubMed ID: 22290195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.