These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 1717259)

  • 21. Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression.
    Strzelecka D; Smietanski M; Sikorski PJ; Warminski M; Kowalska J; Jemielity J
    RNA; 2020 Dec; 26(12):1815-1837. PubMed ID: 32820035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript.
    Muhlrad D; Decker CJ; Parker R
    Genes Dev; 1994 Apr; 8(7):855-66. PubMed ID: 7926773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of breakdown of the polyadenylate sequence in mammalian polyribosomes: role of poly(adenylic acid)-protein interactions.
    Bergmann IE; Brawerman G
    Biochemistry; 1977 Jan; 16(2):259-64. PubMed ID: 556945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life.
    Prieto S; de la Cruz BJ; Scheffler IE
    J Biol Chem; 2000 May; 275(19):14155-66. PubMed ID: 10799492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular basis of coupling between poly(A)-tail length and translational efficiency.
    Xiang K; Bartel DP
    Elife; 2021 Jul; 10():. PubMed ID: 34213414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cap-dependent deadenylation of mRNA.
    Dehlin E; Wormington M; Körner CG; Wahle E
    EMBO J; 2000 Mar; 19(5):1079-86. PubMed ID: 10698948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes.
    Edwalds-Gilbert G; Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1993 Jun; 13(6):3472-80. PubMed ID: 7684499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease.
    Körner CG; Wahle E
    J Biol Chem; 1997 Apr; 272(16):10448-56. PubMed ID: 9099687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage of poly(A) tails on the 3'-end of RNA by ribonuclease E of Escherichia coli.
    Walsh AP; Tock MR; Mallen MH; Kaberdin VR; von Gabain A; McDowall KJ
    Nucleic Acids Res; 2001 May; 29(9):1864-71. PubMed ID: 11328869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global view on the metabolism of RNA poly(A) tails in yeast Saccharomyces cerevisiae.
    Tudek A; Krawczyk PS; Mroczek S; Tomecki R; Turtola M; Matylla-Kulińska K; Jensen TH; Dziembowski A
    Nat Commun; 2021 Aug; 12(1):4951. PubMed ID: 34400637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enzyme that adds poly(A) to mRNAs is a classical poly(A) polymerase.
    Bardwell VJ; Zarkower D; Edmonds M; Wickens M
    Mol Cell Biol; 1990 Feb; 10(2):846-9. PubMed ID: 2153926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-Binding Protein-Mediated mRNA Deadenylation in Mammalian Cell Extracts.
    Lai WS; Hicks SN; Blackshear PJ
    Methods Mol Biol; 2024; 2723():173-191. PubMed ID: 37824071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal.
    Viswanathan P; Ohn T; Chiang YC; Chen J; Denis CL
    J Biol Chem; 2004 Jun; 279(23):23988-95. PubMed ID: 15044470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate-specific regulation of RNA deadenylation in Xenopus embryo and activated egg extracts.
    Legagneux V; Omilli F; Osborne HB
    RNA; 1995 Dec; 1(10):1001-8. PubMed ID: 8595555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(A) tail degradation in human cells: ATF4 mRNA as a model for biphasic deadenylation.
    Jolles B; Jean-Jean O
    Biochimie; 2021 Jun; 185():128-134. PubMed ID: 33775689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Messenger RNA turnover in eukaryotes: pathways and enzymes.
    Meyer S; Temme C; Wahle E
    Crit Rev Biochem Mol Biol; 2004; 39(4):197-216. PubMed ID: 15596551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saccharomyces cerevisiae Ngl3p is an active 3'-5' exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases.
    Feddersen A; Dedic E; Poulsen EG; Schmid M; Van LB; Jensen TH; Brodersen DE
    Nucleic Acids Res; 2012 Jan; 40(2):837-46. PubMed ID: 21965533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Messenger RNA decay in mammalian cells: the exonuclease perspective.
    Fritz DT; Bergman N; Kilpatrick WJ; Wilusz CJ; Wilusz J
    Cell Biochem Biophys; 2004; 41(2):265-78. PubMed ID: 15475613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
    Webster MW; Chen YH; Stowell JAW; Alhusaini N; Sweet T; Graveley BR; Coller J; Passmore LA
    Mol Cell; 2018 Jun; 70(6):1089-1100.e8. PubMed ID: 29932902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assaying mRNA deadenylation in vitro.
    Jeske M; Temme C; Wahle E
    Methods Mol Biol; 2014; 1125():297-311. PubMed ID: 24590798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.