These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17172598)

  • 41. Characterization of the early steps of OE17 precursor transport by the thylakoid DeltapH/Tat machinery.
    Musser SM; Theg SM
    Eur J Biochem; 2000 May; 267(9):2588-98. PubMed ID: 10785379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ten amino acids of the oxygen-evolving enhancer of tobacco is sufficient as the peptide residues for protein transport to the chloroplast thylakoid.
    Ma SH; Kim HM; Park SH; Park SY; Mai TD; Do JH; Koo Y; Joung YH
    Plant Mol Biol; 2021 Mar; 105(4-5):513-523. PubMed ID: 33393067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane.
    Hynds PJ; Robinson D; Robinson C
    J Biol Chem; 1998 Dec; 273(52):34868-74. PubMed ID: 9857014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Twin arginine translocation (Tat)-dependent protein transport: the passenger protein participates in the initial membrane binding step.
    Schlesier R; Klösgen RB
    Biol Chem; 2010 Dec; 391(12):1411-7. PubMed ID: 20868232
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One signal is enough: Stepwise transport of two distinct passenger proteins by the Tat pathway across the thylakoid membrane.
    Fan E; Jakob M; Klösgen RB
    Biochem Biophys Res Commun; 2010 Jul; 398(3):438-43. PubMed ID: 20599707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life.
    Widdick DA; Eijlander RT; van Dijl JM; Kuipers OP; Palmer T
    J Mol Biol; 2008 Jan; 375(3):595-603. PubMed ID: 18054046
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insertion of PsaK into the thylakoid membrane in a "Horseshoe" conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional albino3.
    Mant A; Woolhead CA; Moore M; Henry R; Robinson C
    J Biol Chem; 2001 Sep; 276(39):36200-6. PubMed ID: 11451950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Component specificity for the thylakoidal Sec and Delta pH-dependent protein transport pathways.
    Mori H; Summer EJ; Ma X; Cline K
    J Cell Biol; 1999 Jul; 146(1):45-56. PubMed ID: 10402459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting of lumenal proteins across the thylakoid membrane.
    Albiniak AM; Baglieri J; Robinson C
    J Exp Bot; 2012 Feb; 63(4):1689-98. PubMed ID: 22275386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex.
    Ulfig A; Fröbel J; Lausberg F; Blümmel AS; Heide AK; Müller M; Freudl R
    J Biol Chem; 2017 Jun; 292(26):10865-10882. PubMed ID: 28515319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting of proteins to the twin-arginine translocation pathway.
    Palmer T; Stansfeld PJ
    Mol Microbiol; 2020 May; 113(5):861-871. PubMed ID: 31971282
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tat subunit stoichiometry in Arabidopsis thaliana challenges the proposed function of TatA as the translocation pore.
    Jakob M; Kaiser S; Gutensohn M; Hanner P; Klösgen RB
    Biochim Biophys Acta; 2009 Feb; 1793(2):388-94. PubMed ID: 18930082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proton transfer limits protein translocation rate by the thylakoid DeltapH/Tat machinery.
    Musser SM; Theg SM
    Biochemistry; 2000 Jul; 39(28):8228-33. PubMed ID: 10889030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translocation of a phycoerythrin alpha subunit across five biological membranes.
    Gould SB; Fan E; Hempel F; Maier UG; Klösgen RB
    J Biol Chem; 2007 Oct; 282(41):30295-302. PubMed ID: 17702756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chloroplast SecA functions as a membrane-associated component of the Sec-like protein translocase of pea chloroplasts.
    Haward SR; Napier JA; Gray JC
    Eur J Biochem; 1997 Sep; 248(3):724-30. PubMed ID: 9342223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo transport of folded EGFP by the DeltapH/TAT-dependent pathway in chloroplasts of Arabidopsis thaliana.
    Marques JP; Schattat MH; Hause G; Dudeck I; Klösgen RB
    J Exp Bot; 2004 Aug; 55(403):1697-706. PubMed ID: 15208333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways.
    Mori H; Cline K
    Biochim Biophys Acta; 2001 Dec; 1541(1-2):80-90. PubMed ID: 11750664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.
    Ulfig A; Freudl R
    J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tat-dependent protein targeting in prokaryotes and chloroplasts.
    Robinson C; Bolhuis A
    Biochim Biophys Acta; 2004 Nov; 1694(1-3):135-47. PubMed ID: 15546663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.