These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17172725)

  • 21. Serum peptidome profiling revealed platelet factor 4 as a potential discriminating Peptide associated with pancreatic cancer.
    Fiedler GM; Leichtle AB; Kase J; Baumann S; Ceglarek U; Felix K; Conrad T; Witzigmann H; Weimann A; Schütte C; Hauss J; Büchler M; Thiery J
    Clin Cancer Res; 2009 Jun; 15(11):3812-9. PubMed ID: 19470732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass spectrometry based proteomic profiling for pancreatic cancer.
    Pawa N; Wright JM; Arulampalam TH
    JOP; 2010 Sep; 11(5):423-6. PubMed ID: 20818108
    [No Abstract]   [Full Text] [Related]  

  • 23. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology.
    Iacobuzio-Donahue CA; Maitra A; Shen-Ong GL; van Heek T; Ashfaq R; Meyer R; Walter K; Berg K; Hollingsworth MA; Cameron JL; Yeo CJ; Kern SE; Goggins M; Hruban RH
    Am J Pathol; 2002 Apr; 160(4):1239-49. PubMed ID: 11943709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA array/microarrays in oncological research with focus on pancreatic cancer.
    Baron A; Moore PS; Scarpa A
    Adv Clin Path; 2001 Oct; 5(4):115-20. PubMed ID: 17582935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions.
    Buchholz M; Braun M; Heidenblut A; Kestler HA; Klöppel G; Schmiegel W; Hahn SA; Lüttges J; Gress TM
    Oncogene; 2005 Oct; 24(44):6626-36. PubMed ID: 16103885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential for proteomic approaches in determining efficacy biomarkers following administration of fish oils rich in omega-3 fatty acids: application in pancreatic cancers.
    Runau F; Arshad A; Isherwood J; Norris L; Howells L; Metcalfe M; Dennison A
    Nutr Clin Pract; 2015 Jun; 30(3):363-70. PubMed ID: 25616520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays.
    Sato N; Fukushima N; Maitra A; Matsubayashi H; Yeo CJ; Cameron JL; Hruban RH; Goggins M
    Cancer Res; 2003 Jul; 63(13):3735-42. PubMed ID: 12839967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On multiple testing, validation of gene expression profiling, and translational research.
    Xie XJ
    Chin Med J (Engl); 2008 Jul; 121(13):1247; author reply 1247-8. PubMed ID: 18710649
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification of novel targets for cancer therapy using expression proteomics.
    Hanash SM; Madoz-Gurpide J; Misek DE
    Leukemia; 2002 Apr; 16(4):478-85. PubMed ID: 11960325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer.
    Zhao YP; Chen G; Feng B; Zhang TP; Ma EL; Wu YD
    Chin Med J (Engl); 2007 Oct; 120(20):1743-52. PubMed ID: 18028764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.
    Janero DR
    Expert Opin Drug Discov; 2014 Aug; 9(8):847-58. PubMed ID: 24965547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of gene array technology and proteomics in the search of new targets of diseases for therapeutics.
    Ferrer-Alcón M; Arteta D; Guerrero MJ; Fernandez-Orth D; Simón L; Martinez A
    Toxicol Lett; 2009 Apr; 186(1):45-51. PubMed ID: 19022361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers.
    Sato N; Fukushima N; Chang R; Matsubayashi H; Goggins M
    Gastroenterology; 2006 Feb; 130(2):548-65. PubMed ID: 16472607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Possible detection of pancreatic cancer by plasma protein profiling.
    Honda K; Hayashida Y; Umaki T; Okusaka T; Kosuge T; Kikuchi S; Endo M; Tsuchida A; Aoki T; Itoi T; Moriyasu F; Hirohashi S; Yamada T
    Cancer Res; 2005 Nov; 65(22):10613-22. PubMed ID: 16288055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global profiling of gene expression in cancer using genomics and proteomics.
    Hanash SM
    Curr Opin Mol Ther; 2001 Dec; 3(6):538-45. PubMed ID: 11804268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression.
    Ryu B; Jones J; Blades NJ; Parmigiani G; Hollingsworth MA; Hruban RH; Kern SE
    Cancer Res; 2002 Feb; 62(3):819-26. PubMed ID: 11830538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of an agent selectively targeting DPC4 (deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells.
    Wang H; Han H; Von Hoff DD
    Cancer Res; 2006 Oct; 66(19):9722-30. PubMed ID: 17018631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microarray technologies for gene transcript analysis in pancreatic cancer.
    Kolbert CP; Kolbert CP; Chari S; Sreekumar R
    Technol Cancer Res Treat; 2008 Feb; 7(1):55-9. PubMed ID: 18198925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of alternatively spliced transcripts using a proteomic informatics approach.
    Menon R; Omenn GS
    Methods Mol Biol; 2011; 696():319-26. PubMed ID: 21063957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.