These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 17173020)

  • 1. Fighting toxic copper in a bacterial pathogen.
    Wilmot CM
    Nat Chem Biol; 2007 Jan; 3(1):15-6. PubMed ID: 17173020
    [No Abstract]   [Full Text] [Related]  

  • 2. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator.
    Liu T; Ramesh A; Ma Z; Ward SK; Zhang L; George GN; Talaat AM; Sacchettini JC; Giedroc DP
    Nat Chem Biol; 2007 Jan; 3(1):60-8. PubMed ID: 17143269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of iron metabolism in Mycobacterium tuberculosis.
    Rodriguez GM
    Trends Microbiol; 2006 Jul; 14(7):320-7. PubMed ID: 16759864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The global responses of Mycobacterium tuberculosis to physiological levels of copper.
    Ward SK; Hoye EA; Talaat AM
    J Bacteriol; 2008 Apr; 190(8):2939-46. PubMed ID: 18263720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel function of Mycobacterium tuberculosis chaperonin paralog GroEL1 in copper homeostasis.
    Ansari MY; Batra SD; Ojha H; Dhiman K; Ganguly A; Tyagi JS; Mande SC
    FEBS Lett; 2020 Oct; 594(20):3305-3323. PubMed ID: 32808291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis.
    Burian J; Ramón-García S; Howes CG; Thompson CJ
    Expert Rev Anti Infect Ther; 2012 Sep; 10(9):1037-47. PubMed ID: 23106278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of oxyR in Mycobacterium tuberculosis.
    Deretic V; Song J; Pagán-Ramos E
    Trends Microbiol; 1997 Sep; 5(9):367-72. PubMed ID: 9294894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis.
    Latorre M; Low M; Gárate E; Reyes-Jara A; Murray BE; Cambiazo V; González M
    Metallomics; 2015 Jul; 7(7):1137-45. PubMed ID: 25906431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the redox sensitivity of the Mycobacterium tuberculosis SigK-RskA σ-anti-σ complex.
    Shukla J; Gupta R; Thakur KG; Gokhale R; Gopal B
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1026-36. PubMed ID: 24699647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis.
    Frota CC; Papavinasasundaram KG; Davis EO; Colston MJ
    Infect Immun; 2004 Sep; 72(9):5483-6. PubMed ID: 15322050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum.
    Teramoto H; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3505-17. PubMed ID: 25592736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OxyR: a molecular code for redox sensing?
    Helmann JD
    Sci STKE; 2002 Nov; 2002(157):pe46. PubMed ID: 12419849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1.
    Zhao Z; Zhou Z; Li L; Xian X; Ke X; Chen M; Zhang Y
    Mol Biosyst; 2014 Oct; 10(10):2607-16. PubMed ID: 25030084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper homeostasis in Mycobacterium tuberculosis.
    Shi X; Darwin KH
    Metallomics; 2015 Jun; 7(6):929-34. PubMed ID: 25614981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Purloined Letter: bacterial orthologs of archaeal NMN adenylyltransferase are domains within multifunctional transcription regulator NadR.
    Mushegian A
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):127-8. PubMed ID: 10941793
    [No Abstract]   [Full Text] [Related]  

  • 16. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein.
    Zhang A; Altuvia S; Tiwari A; Argaman L; Hengge-Aronis R; Storz G
    EMBO J; 1998 Oct; 17(20):6061-8. PubMed ID: 9774349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallobiology of host-pathogen interactions: an intoxicating new insight.
    Botella H; Stadthagen G; Lugo-Villarino G; de Chastellier C; Neyrolles O
    Trends Microbiol; 2012 Mar; 20(3):106-12. PubMed ID: 22305804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulators and mediators of the p53 tumor suppressor.
    Cadwell C; Zambetti GP
    J Cell Biochem Suppl; 1998; 30-31():43-9. PubMed ID: 9893254
    [No Abstract]   [Full Text] [Related]  

  • 20. Computational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis open reading frames.
    Prakash P; Yellaboina S; Ranjan A; Hasnain SE
    Bioinformatics; 2005 May; 21(10):2161-6. PubMed ID: 15746274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.