These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 17173632)
1. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Triguero A; Cabrera G; Cremata JA; Yuen CT; Wheeler J; Ramírez NI Plant Biotechnol J; 2005 Jul; 3(4):449-57. PubMed ID: 17173632 [TBL] [Abstract][Full Text] [Related]
2. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. Triguero A; Cabrera G; Rodríguez M; Soto J; Zamora Y; Pérez M; Wormald MR; Cremata JA Plant Biotechnol J; 2011 Dec; 9(9):1120-30. PubMed ID: 21819534 [TBL] [Abstract][Full Text] [Related]
4. A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Petruccelli S; Otegui MS; Lareu F; Tran Dinh O; Fitchette AC; Circosta A; Rumbo M; Bardor M; Carcamo R; Gomord V; Beachy RN Plant Biotechnol J; 2006 Sep; 4(5):511-27. PubMed ID: 17309727 [TBL] [Abstract][Full Text] [Related]
5. Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Sriraman R; Bardor M; Sack M; Vaquero C; Faye L; Fischer R; Finnern R; Lerouge P Plant Biotechnol J; 2004 Jul; 2(4):279-87. PubMed ID: 17134389 [TBL] [Abstract][Full Text] [Related]
6. Chemical and enzymatic N-glycan release comparison for N-glycan profiling of monoclonal antibodies expressed in plants. Triguero A; Cabrera G; Royle L; Harvey DJ; Rudd PM; Dwek RA; Bardor M; Lerouge P; Cremata JA Anal Biochem; 2010 May; 400(2):173-83. PubMed ID: 20109437 [TBL] [Abstract][Full Text] [Related]
7. Change in glycosylation pattern with extension of endoplasmic reticulum retention signal sequence of mouse antibody produced by suspension-cultured tobacco BY2 cells. Fujiyama K; Misaki R; Sakai Y; Omasa T; Seki T J Biosci Bioeng; 2009 Feb; 107(2):165-72. PubMed ID: 19217555 [TBL] [Abstract][Full Text] [Related]
8. Expression and characterization of an anti-(hepatitis B surface antigen) glycosylated mouse antibody in transgenic tobacco (Nicotiana tabacum) plants and its use in the immunopurification of its target antigen. Ramírez N; Rodríguez M; Ayala M; Cremata J; Pérez M; Martínez A; Linares M; Hevia Y; Páez R; Valdés R; Gavilondo JV; Selman-Housein G Biotechnol Appl Biochem; 2003 Dec; 38(Pt 3):223-30. PubMed ID: 12797866 [TBL] [Abstract][Full Text] [Related]
9. Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Frey AD; Karg SR; Kallio PT Plant Biotechnol J; 2009 Jan; 7(1):33-48. PubMed ID: 18778316 [TBL] [Abstract][Full Text] [Related]
10. Site-specific glycosylation analysis of the bovine lysosomal alpha-mannosidase. Faid V; Evjen G; Tollersrud OK; Michalski JC; Morelle W Glycobiology; 2006 May; 16(5):440-61. PubMed ID: 16449350 [TBL] [Abstract][Full Text] [Related]
12. Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Rouwendal GJ; Wuhrer M; Florack DE; Koeleman CA; Deelder AM; Bakker H; Stoopen GM; van Die I; Helsper JP; Hokke CH; Bosch D Glycobiology; 2007 Mar; 17(3):334-44. PubMed ID: 17179169 [TBL] [Abstract][Full Text] [Related]
13. N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells. Misaki R; Sakai Y; Omasa T; Fujiyama K; Seki T J Biosci Bioeng; 2011 Nov; 112(5):476-84. PubMed ID: 21802986 [TBL] [Abstract][Full Text] [Related]
14. N-glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry. Otto VI; Damoc E; Cueni LN; Schürpf T; Frei R; Ali S; Callewaert N; Moise A; Leary JA; Folkers G; Przybylski M Glycobiology; 2006 Nov; 16(11):1033-44. PubMed ID: 16877748 [TBL] [Abstract][Full Text] [Related]
15. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. Iizuka M; Ogawa S; Takeuchi A; Nakakita S; Kubo Y; Miyawaki Y; Hirabayashi J; Tomita M FEBS J; 2009 Oct; 276(20):5806-20. PubMed ID: 19740109 [TBL] [Abstract][Full Text] [Related]
16. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Müthing J; Kemminer SE; Conradt HS; Sagi D; Nimtz M; Kärst U; Peter-Katalinić J Biotechnol Bioeng; 2003 Aug; 83(3):321-34. PubMed ID: 12783488 [TBL] [Abstract][Full Text] [Related]
17. Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants. Chen M; Liu X; Wang Z; Song J; Qi Q; Wang PG Med Res Rev; 2005 May; 25(3):343-60. PubMed ID: 15499575 [TBL] [Abstract][Full Text] [Related]
18. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking. Morelle W; Stechly L; André S; Van Seuningen I; Porchet N; Gabius HJ; Michalski JC; Huet G Biol Chem; 2009 Jul; 390(7):529-44. PubMed ID: 19426135 [TBL] [Abstract][Full Text] [Related]
19. Production and molecular characterization of clinical phase i anti-melanoma mouse IgG3 monoclonal antibody R24. Kemminer SE; Conradt HS; Nimtz M; Sagi D; Peter-Katalinić J; Diekmann O; Drmić I; Müthing J Biotechnol Prog; 2001; 17(5):809-21. PubMed ID: 11587568 [TBL] [Abstract][Full Text] [Related]