These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Liebermeister W; Klipp E Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670 [TBL] [Abstract][Full Text] [Related]
5. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Liebermeister W; Uhlendorf J; Klipp E Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728 [TBL] [Abstract][Full Text] [Related]
6. Biochemical thermodynamics: applications of Mathematica. Alberty RA Methods Biochem Anal; 2006; 48():1-458. PubMed ID: 16878778 [TBL] [Abstract][Full Text] [Related]
7. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. Tummler K; Lubitz T; Schelker M; Klipp E FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816 [TBL] [Abstract][Full Text] [Related]
8. Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Alberty RA Arch Biochem Biophys; 1998 May; 353(1):116-30. PubMed ID: 9578607 [TBL] [Abstract][Full Text] [Related]
9. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Costa RS; Machado D; Rocha I; Ferreira EC Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228 [TBL] [Abstract][Full Text] [Related]
10. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions. Stoner CD Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Qian H; Beard DA Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355 [TBL] [Abstract][Full Text] [Related]
12. Modeling of uncertainties in biochemical reactions. Mišković L; Hatzimanikatis V Biotechnol Bioeng; 2011 Feb; 108(2):413-23. PubMed ID: 20830674 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic reaction rate limits with constraints on equilibrium constants and experimental parameters. Bish DR; Mavrovouniotis ML Biosystems; 1998; 47(1-2):37-60. PubMed ID: 9715750 [TBL] [Abstract][Full Text] [Related]
14. Integration of enzyme kinetic data from various sources. Borger S; Uhlendorf J; Helbig A; Liebermeister W In Silico Biol; 2007; 7(2 Suppl):S73-9. PubMed ID: 17822393 [TBL] [Abstract][Full Text] [Related]
15. Prediction of enzyme kinetic parameters based on statistical learning. Borger S; Liebermeister W; Klipp E Genome Inform; 2006; 17(1):80-7. PubMed ID: 17503358 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamically consistent model calibration in chemical kinetics. Jenkinson G; Goutsias J BMC Syst Biol; 2011 May; 5():64. PubMed ID: 21548948 [TBL] [Abstract][Full Text] [Related]
17. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration. Fleming RM; Thiele I J Theor Biol; 2012 Dec; 314():173-81. PubMed ID: 22947275 [TBL] [Abstract][Full Text] [Related]
18. Systematic assignment of thermodynamic constraints in metabolic network models. Kümmel A; Panke S; Heinemann M BMC Bioinformatics; 2006 Nov; 7():512. PubMed ID: 17123434 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary optimization of enzyme kinetic parameters; effect of constraints. Klipp E; Heinrich R J Theor Biol; 1994 Dec; 171(3):309-23. PubMed ID: 7869733 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamically feasible kinetic models of reaction networks. Ederer M; Gilles ED Biophys J; 2007 Mar; 92(6):1846-57. PubMed ID: 17208985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]