These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 17173669)
41. Thermodynamic properties of enzyme-catalyzed reactions involving cytosine, uracil, thymine, and their nucleosides and nucleotides. Alberty RA Biophys Chem; 2007 Apr; 127(1-2):91-6. PubMed ID: 17240519 [TBL] [Abstract][Full Text] [Related]
42. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. Palsson BO; Lightfoot EN J Theor Biol; 1984 Nov; 111(2):273-302. PubMed ID: 6513572 [TBL] [Abstract][Full Text] [Related]
43. Simplifying principles for chemical and enzyme reaction kinetics. Klonowski W Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688 [TBL] [Abstract][Full Text] [Related]
44. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Hoh CY; Cord-Ruwisch R Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824 [TBL] [Abstract][Full Text] [Related]
45. Relations between biochemical thermodynamics and biochemical kinetics. Alberty RA Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115 [TBL] [Abstract][Full Text] [Related]
46. Control analysis of unbranched enzymatic chains in states of maximal activity. Heinrich R; Klipp E J Theor Biol; 1996 Oct; 182(3):243-52. PubMed ID: 8944155 [TBL] [Abstract][Full Text] [Related]
47. Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes. Palsson BO; Jamier R; Lightfoot EN J Theor Biol; 1984 Nov; 111(2):303-21. PubMed ID: 6513573 [TBL] [Abstract][Full Text] [Related]
48. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact. Fischer E; Keleti T Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106 [TBL] [Abstract][Full Text] [Related]
49. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Alberty RA Arch Biochem Biophys; 1997 Dec; 348(1):116-24. PubMed ID: 9390181 [TBL] [Abstract][Full Text] [Related]
50. A new approach for determination of the selectively favoured kinetic design of enzyme reactions. Pettersson G J Theor Biol; 1996 Nov; 183(2):179-83. PubMed ID: 8977876 [TBL] [Abstract][Full Text] [Related]
51. Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model. McNevin D; von Caemmerer S; Farquhar G J Exp Bot; 2006; 57(14):3883-900. PubMed ID: 17046981 [TBL] [Abstract][Full Text] [Related]
52. Estimation of kinetic parameters for enzyme-inhibition reaction models using direct time-dependent equations for reactant concentrations. Goličnik M Acta Chim Slov; 2012 Mar; 59(1):207-11. PubMed ID: 24061194 [TBL] [Abstract][Full Text] [Related]
53. Thermodynamic properties of enzyme-catalyzed reactions involving guanine, xanthine, and their nucleosides and nucleotides. Alberty RA Biophys Chem; 2006 Jun; 121(3):157-62. PubMed ID: 16466672 [TBL] [Abstract][Full Text] [Related]
54. Thermodynamically consistent estimation of Gibbs free energy from data: data reconciliation approach. Salike S; Bhatt N Bioinformatics; 2020 Feb; 36(4):1219-1225. PubMed ID: 31584610 [TBL] [Abstract][Full Text] [Related]
55. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions. Saa P; Nielsen LK PLoS Comput Biol; 2015 Apr; 11(4):e1004195. PubMed ID: 25874556 [TBL] [Abstract][Full Text] [Related]
56. Efficiency and design of simple metabolic systems. Heinrich R; Holzhütter HG Biomed Biochim Acta; 1985; 44(6):959-69. PubMed ID: 4038290 [TBL] [Abstract][Full Text] [Related]
57. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops. Palsson BO; Lightfoot EN J Theor Biol; 1985 Mar; 113(2):279-98. PubMed ID: 3999779 [TBL] [Abstract][Full Text] [Related]
58. Accuracy of alternative representations for integrated biochemical systems. Voit EO; Savageau MA Biochemistry; 1987 Oct; 26(21):6869-80. PubMed ID: 3427048 [TBL] [Abstract][Full Text] [Related]
59. Power-law modeling based on least-squares minimization criteria. Hernández-Bermejo B; Fairén V; Sorribas A Math Biosci; 1999 Oct; 161(1-2):83-94. PubMed ID: 10546442 [TBL] [Abstract][Full Text] [Related]
60. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. C Mason J; W Covert M J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]