BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 17173925)

  • 1. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation.
    Pérez MA; Prendergast PJ
    J Biomech; 2007; 40(10):2244-53. PubMed ID: 17173925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
    Loboa EG; Wren TA; Beaupré GS; Carter DR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):83-96. PubMed ID: 14586808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of fracture gap size on the pattern of long bone healing: a computational study.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Theor Biol; 2005 Jul; 235(1):105-19. PubMed ID: 15833317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants.
    Geris L; Van Oosterwyck H; Vander Sloten J; Duyck J; Naert I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):277-88. PubMed ID: 14675948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
    Andreykiv A; van Keulen F; Prendergast PJ
    Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering.
    Byrne DP; Lacroix D; Planell JA; Kelly DJ; Prendergast PJ
    Biomaterials; 2007 Dec; 28(36):5544-54. PubMed ID: 17897712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach.
    Checa S; Prendergast PJ
    Ann Biomed Eng; 2009 Jan; 37(1):129-45. PubMed ID: 19011968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation.
    Andreykiv A; van Keulen F; Prendergast PJ
    J Biomech Eng; 2008 Oct; 130(5):051015. PubMed ID: 19045522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach.
    Khayyeri H; Checa S; Tägil M; Prendergast PJ
    J Orthop Res; 2009 Dec; 27(12):1659-66. PubMed ID: 19514073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber.
    Geris L; Andreykiv A; Van Oosterwyck H; Sloten JV; van Keulen F; Duyck J; Naert I
    J Biomech; 2004 May; 37(5):763-9. PubMed ID: 15047006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.
    Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K
    J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.
    Garijo N; Manzano R; Osta R; Perez MA
    J Theor Biol; 2012 Dec; 314():1-9. PubMed ID: 22954469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells.
    Moreo P; García-Aznar JM; Doblaré M
    Acta Biomater; 2008 May; 4(3):613-21. PubMed ID: 18180207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm.
    Liu X; Niebur GL
    Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity.
    Khayyeri H; Checa S; Tägil M; Aspenberg P; Prendergast PJ
    J Biomech; 2011 Apr; 44(6):1051-8. PubMed ID: 21377680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence.
    Huang S; Brangwynne CP; Parker KK; Ingber DE
    Cell Motil Cytoskeleton; 2005 Aug; 61(4):201-13. PubMed ID: 15986404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.