BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17173955)

  • 1. Attenuation of mining-derived pollutants in the hyporheic zone: a review.
    Gandy CJ; Smith JW; Jarvis AP
    Sci Total Environ; 2007 Feb; 373(2-3):435-46. PubMed ID: 17173955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.
    Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH
    Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage.
    Hoagland B; Rasmussen KL; Singha K; Spear JR; Navarre-Sitchler A
    Appl Environ Microbiol; 2024 Mar; 90(3):e0198723. PubMed ID: 38391193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.
    Filella M; Philippo S; Belzile N; Chen Y; Quentel F
    Sci Total Environ; 2009 Dec; 407(24):6205-16. PubMed ID: 19775729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human impacts on the stream-groundwater exchange zone.
    Hancock PJ
    Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river.
    Cardenas MB; Markowski MS
    Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium biogeochemical cycling and fluxes in the hyporheic zone of a mining-impacted stream.
    Oram LL; Strawn DG; Morra MJ; Möller G
    Environ Sci Technol; 2010 Jun; 44(11):4176-83. PubMed ID: 20443593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential.
    Weatherill JJ; Atashgahi S; Schneidewind U; Krause S; Ullah S; Cassidy N; Rivett MO
    Water Res; 2018 Jan; 128():362-382. PubMed ID: 29126033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer.
    Schäffner F; Merten D; Pollok K; Wagner S; Knoblauch S; Langenhorst F; Büchel G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19362-75. PubMed ID: 25822842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The longevity of minewater pollution: a basis for decision-making.
    Younger PL
    Sci Total Environ; 1997 Feb; 194-195():457-66. PubMed ID: 9112788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of arsenic content in mine groundwater commonly used for human consumption in Utah.
    Pawlak Z; Rauckyte T; Zak S; Praveen P
    Environ Technol; 2008 Feb; 29(2):217-24. PubMed ID: 18613620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MTBE, TBA, and TAME attenuation in diverse hyporheic zones.
    Landmeyer JE; Bradley PM; Trego DA; Hale KG; Haas JE
    Ground Water; 2010; 48(1):30-41. PubMed ID: 19664047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
    Blodau C
    Sci Total Environ; 2006 Oct; 369(1-3):307-32. PubMed ID: 16806405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.
    Zhou S; Yuan X; Peng S; Yue J; Wang X; Liu H; Williams DD
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):13943-55. PubMed ID: 25081003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odiel River, acid mine drainage and current characterisation by means of univariate analysis.
    Sainz A; Grande JA; de la Torre ML
    Environ Int; 2003 Apr; 29(1):51-9. PubMed ID: 12605937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
    Ellis PA; Mackay R; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):58-80. PubMed ID: 17182151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK).
    Tatsi K; Turner A
    Sci Total Environ; 2014 Mar; 473-474():139-46. PubMed ID: 24368195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.