These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17174088)

  • 1. Lead removal through biological sulfate reduction process.
    Hien Hoa TT; Liamleam W; Annachhatre AP
    Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.
    Velasco A; Ramírez M; Volke-Sepúlveda T; González-Sánchez A; Revah S
    J Hazard Mater; 2008 Mar; 151(2-3):407-13. PubMed ID: 17640800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treating industrial discharges by thermophilic sulfate reduction process with molasses as electron donor.
    Liamleam W; Annachhatre AP
    Environ Technol; 2007 Jun; 28(6):639-47. PubMed ID: 17624104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate reduction at pH 4 during the thermophilic (55 degrees C) acidification of sucrose in UASB reactors.
    Lopes SI; Capela MI; Dar SA; Muyzer G; Lens PN
    Biotechnol Prog; 2008; 24(6):1278-89. PubMed ID: 19194942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: effect of sulfide and COD/SO(2-)(4) ratio.
    Lopes SI; Capela MI; Lens PN
    Bioresour Technol; 2010 Jun; 101(12):4278-84. PubMed ID: 20171883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells.
    Kuo WC; Shu TY
    J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tannery effluent as a carbon source for biological sulphate reduction.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.
    Gonçalves MM; de Oliveira Mello LA; da Costa AC
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):97-105. PubMed ID: 18401756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.
    Lenz M; Hullebusch ED; Hommes G; Corvini PF; Lens PN
    Water Res; 2008 Apr; 42(8-9):2184-94. PubMed ID: 18177686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.