These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17174392)

  • 21. Fabrication of hierarchical micro-nanotopographies for cell attachment studies.
    López-Bosque MJ; Tejeda-Montes E; Cazorla M; Linacero J; Atienza Y; Smith KH; Lladó A; Colombelli J; Engel E; Mata A
    Nanotechnology; 2013 Jun; 24(25):255305. PubMed ID: 23727615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth.
    Csaderova L; Martines E; Seunarine K; Gadegaard N; Wilkinson CD; Riehle MO
    Small; 2010 Dec; 6(23):2755-61. PubMed ID: 21069889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Significance of synthetic nanostructures in dictating cellular response.
    Yim EK; Leong KW
    Nanomedicine; 2005 Mar; 1(1):10-21. PubMed ID: 17292053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of nanopatterns on endothelial cell adhesion: Enhanced cell retention under shear stress.
    Zorlutuna P; Rong Z; Vadgama P; Hasirci V
    Acta Biomater; 2009 Sep; 5(7):2451-9. PubMed ID: 19394284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts.
    Figallo E; Flaibani M; Zavan B; Abatangelo G; Elvassore N
    Biotechnol Prog; 2007; 23(1):210-6. PubMed ID: 17269690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of animal cells with ordered nanotopography.
    Gallagher JO; McGhee KF; Wilkinson CD; Riehle MO
    IEEE Trans Nanobioscience; 2002 Mar; 1(1):24-8. PubMed ID: 16689218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.
    Kalbacova M; Rezek B; Baresova V; Wolf-Brandstetter C; Kromka A
    Acta Biomater; 2009 Oct; 5(8):3076-85. PubMed ID: 19433140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of colloidal nanotopography on initial fibroblast adhesion and morphology.
    Wood MA; Wilkinson CD; Curtis AS
    IEEE Trans Nanobioscience; 2006 Mar; 5(1):20-31. PubMed ID: 16570870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cells preferentially grow on rough substrates.
    Gentile F; Tirinato L; Battista E; Causa F; Liberale C; di Fabrizio EM; Decuzzi P
    Biomaterials; 2010 Oct; 31(28):7205-12. PubMed ID: 20637503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of systematically varied nano-scale topography on cell morphology and adhesion.
    Heydarkhan-Hagvall S; Choi CH; Dunn J; Heydarkhan S; Schenke-Layland K; MacLellan WR; Beygui RE
    Cell Commun Adhes; 2007; 14(5):181-94. PubMed ID: 18163229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling metal nanotoppings on the tip of silicide nanostructures.
    Hwang IC; Kumar R; Kim ND; Chun Y; Lee JW; Kumar P; Mana RS; Choi C; Lee JR; Kim KS
    Nanotechnology; 2009 Jun; 20(24):245605. PubMed ID: 19471081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins.
    Kim G; Min T; Park SA; Kim WD; Koh YH
    Biomed Mater; 2007 Dec; 2(4):250-6. PubMed ID: 18458482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response.
    Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV
    Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fibroblast response to tubes exhibiting internal nanotopography.
    Berry CC; Dalby MJ; McCloy D; Affrossman S
    Biomaterials; 2005 Aug; 26(24):4985-92. PubMed ID: 15769534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of cell migration in two and three dimensions using substrate morphology.
    Liu Y; Franco A; Huang L; Gersappe D; Clark RA; Rafailovich MH
    Exp Cell Res; 2009 Sep; 315(15):2544-57. PubMed ID: 19464288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.
    Khor HL; Kuan Y; Kukula H; Tamada K; Knoll W; Moeller M; Hutmacher DW
    Biomacromolecules; 2007 May; 8(5):1530-40. PubMed ID: 17388626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology controllable nanostructured chitosan matrix and its cytocompatibility.
    Qi L; Pal S; Dutta P; Seehra M; Pei M
    J Biomed Mater Res A; 2008 Oct; 87(1):236-44. PubMed ID: 18092354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanobiotechnology: protein-nanomaterial interactions.
    Kane RS; Stroock AD
    Biotechnol Prog; 2007; 23(2):316-9. PubMed ID: 17335286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.