BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17174413)

  • 1. Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice.
    de Visser L; van den Bos R; Stoker AK; Kas MJ; Spruijt BM
    Behav Brain Res; 2007 Feb; 177(2):290-7. PubMed ID: 17174413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.
    de Visser L; van den Bos R; Spruijt BM
    Behav Brain Res; 2005 May; 160(2):382-8. PubMed ID: 15863235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach to the behavioural characterization of inbred mice: automated home cage observations.
    de Visser L; van den Bos R; Kuurman WW; Kas MJ; Spruijt BM
    Genes Brain Behav; 2006 Aug; 5(6):458-66. PubMed ID: 16923150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic influence on daily wheel running activity level.
    Lightfoot JT; Turner MJ; Daves M; Vordermark A; Kleeberger SR
    Physiol Genomics; 2004 Nov; 19(3):270-6. PubMed ID: 15383638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophin levels and behaviour in BALB/c mice: impact of intermittent exposure to individual housing and wheel running.
    Zhu SW; Pham TM; Aberg E; Brené S; Winblad B; Mohammed AH; Baumans V
    Behav Brain Res; 2006 Feb; 167(1):1-8. PubMed ID: 16343654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.
    Kas MJ; de Mooij-van Malsen AJ; Olivier B; Spruijt BM; van Ree JM
    Behav Neurosci; 2008 Aug; 122(4):769-76. PubMed ID: 18729629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of exploration and risk assessment in pre-weaning mice using the novel cage test.
    Marques JM; Olsson IA; Ogren SO; Dahlborn K
    Physiol Behav; 2008 Jan; 93(1-2):139-47. PubMed ID: 17888463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.
    Dubreucq S; Koehl M; Abrous DN; Marsicano G; Chaouloff F
    Exp Neurol; 2010 Jul; 224(1):106-13. PubMed ID: 20138171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?
    Richter H; Ambrée O; Lewejohann L; Herring A; Keyvani K; Paulus W; Palme R; Touma C; Schäbitz WR; Sachser N
    Behav Brain Res; 2008 Jun; 190(1):74-84. PubMed ID: 18342378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheel-running activity increases with social stress in male DBA mice.
    Uchiumi K; Aoki M; Kikusui T; Takeuchi Y; Mori Y
    Physiol Behav; 2008 Jan; 93(1-2):1-7. PubMed ID: 17707070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of access to a running wheel on behavior of C57BL/6J mice.
    Harri M; Lindblom J; Malinen H; Hyttinen M; Lapveteläinen T; Eskola S; Helminen HJ
    Lab Anim Sci; 1999 Aug; 49(4):401-5. PubMed ID: 10480645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.
    Karvat G; Kimchi T
    Behav Brain Res; 2012 Aug; 233(2):405-14. PubMed ID: 22633921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two types of running wheel in terms of mouse preference, health, and welfare.
    Walker M; Mason G
    Physiol Behav; 2018 Jul; 191():82-90. PubMed ID: 29653112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced alcohol consumption in mice with access to a running wheel.
    Ehringer MA; Hoft NR; Zunhammer M
    Alcohol; 2009 Sep; 43(6):443-52. PubMed ID: 19801274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral assessment of intermittent wheel running and individual housing in mice in the laboratory.
    Pham TM; Brené S; Baumans V
    J Appl Anim Welf Sci; 2005; 8(3):157-73. PubMed ID: 16468945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reward increases running-wheel performance without changing cell proliferation, neuronal differentiation or cell death in the dentate gyrus of C57BL/6 mice.
    Klaus F; Hauser T; Slomianka L; Lipp HP; Amrein I
    Behav Brain Res; 2009 Dec; 204(1):175-81. PubMed ID: 19520122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse strain differences in locomotor, sensitisation and rewarding effect of heroin; association with alterations in MOP-r activation and dopamine transporter binding.
    Bailey A; Metaxas A; Al-Hasani R; Keyworth HL; Forster DM; Kitchen I
    Eur J Neurosci; 2010 Feb; 31(4):742-53. PubMed ID: 20384817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Social dominance rank influences wheel running behavior in mice.
    Vargas-Pérez H; Sellings L; Grieder T; Díaz JL
    Neurosci Lett; 2009 Jul; 457(3):137-40. PubMed ID: 19429180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating the effects of shelter from additional cage enhancements for group-housed BALB/cJ mice.
    Swetter BJ; Karpiak CP; Cannon JT
    Neurosci Lett; 2011 May; 495(3):205-9. PubMed ID: 21457758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: an in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice.
    Thoeringer CK; Sillaber I; Roedel A; Erhardt A; Mueller MB; Ohl F; Holsboer F; Keck ME
    Psychoneuroendocrinology; 2007 Jul; 32(6):746-57. PubMed ID: 17583438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.