BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17174465)

  • 1. Temperature dependence of binding and catalysis for the Cdc25B phosphatase.
    Sohn J; Rudolph J
    Biophys Chem; 2007 Feb; 125(2-3):549-55. PubMed ID: 17174465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and structural studies of specific protein-protein interactions in substrate catalysis by Cdc25B phosphatase.
    Sohn J; Buhrman G; Rudolph J
    Biochemistry; 2007 Jan; 46(3):807-18. PubMed ID: 17223702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energetic network of hotspot residues between Cdc25B phosphatase and its protein substrate.
    Sohn J; Rudolph J
    J Mol Biol; 2006 Oct; 362(5):1060-71. PubMed ID: 16950393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-specific Cdc25B phosphatase: in search of the catalytic acid.
    Chen W; Wilborn M; Rudolph J
    Biochemistry; 2000 Sep; 39(35):10781-9. PubMed ID: 10978163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism of Cdc25.
    Rudolph J
    Biochemistry; 2002 Dec; 41(49):14613-23. PubMed ID: 12463761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic acid in the dephosphorylation of the Cdk2-pTpY/CycA protein complex by Cdc25B phosphatase.
    Arantes GM
    J Phys Chem B; 2008 Nov; 112(47):15244-7. PubMed ID: 18980372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Cdc25B phosphatase with the small molecule substrate p-nitrophenyl phosphate from QM/MM-MFEP calculations.
    Parks JM; Hu H; Rudolph J; Yang W
    J Phys Chem B; 2009 Apr; 113(15):5217-24. PubMed ID: 19301836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate.
    Sohn J; Parks JM; Buhrman G; Brown P; Kristjánsdóttir K; Safi A; Edelsbrunner H; Yang W; Rudolph J
    Biochemistry; 2005 Dec; 44(50):16563-73. PubMed ID: 16342947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of natural and artificial substrates for human Cdc25A.
    Rudolph J; Epstein DM; Parker L; Eckstein J
    Anal Biochem; 2001 Feb; 289(1):43-51. PubMed ID: 11161293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and thermodynamics of mandelate racemase catalysis.
    St Maurice M; Bearne SL
    Biochemistry; 2002 Mar; 41(12):4048-58. PubMed ID: 11900548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of CDC25B phosphatase through disruption of protein-protein interaction.
    Lund G; Dudkin S; Borkin D; Ni W; Grembecka J; Cierpicki T
    ACS Chem Biol; 2015 Feb; 10(2):390-4. PubMed ID: 25423142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature and viscosity on R67 dihydrofolate reductase catalysis.
    Chopra S; Lynch R; Kim SH; Jackson M; Howell EE
    Biochemistry; 2006 May; 45(21):6596-605. PubMed ID: 16716070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches.
    Li HL; Ma Y; Ma Y; Li Y; Chen XB; Dong WL; Wang RL
    Oncotarget; 2017 May; 8(20):33225-33240. PubMed ID: 28402259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis.
    Hwang CC; Chang PR; Hsieh CL; Chou YH; Wang TP
    Chem Biol Interact; 2019 Apr; 302():183-189. PubMed ID: 30794798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effects on the catalytic efficiency, rate enhancement, and transition state affinity of cytidine deaminase, and the thermodynamic consequences for catalysis of removing a substrate "anchor".
    Snider MJ; Gaunitz S; Ridgway C; Short SA; Wolfenden R
    Biochemistry; 2000 Aug; 39(32):9746-53. PubMed ID: 10933791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.