BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 17174723)

  • 1. Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness.
    Lopez-Rodriguez F; Medina-Ceja L; Wilson CL; Jhung D; Morales-Villagran A
    Arch Med Res; 2007 Jan; 38(1):52-5. PubMed ID: 17174723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals.
    Strecker RE; Thakkar MM; Porkka-Heiskanen T; Dauphin LJ; Bjørkum AA; McCarley RW
    Sleep Res Online; 1999; 2(2):21-7. PubMed ID: 11421239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats.
    Léna I; Parrot S; Deschaux O; Muffat-Joly S; Sauvinet V; Renaud B; Suaud-Chagny MF; Gottesmann C
    J Neurosci Res; 2005 Sep; 81(6):891-9. PubMed ID: 16041801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurophysiology of sleep and wakefulness.
    Harris CD
    Respir Care Clin N Am; 2005 Dec; 11(4):567-86. PubMed ID: 16303589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep-related brain activation does not increase the permeability of the blood-brain barrier to glucose.
    Silvani A; Asti V; Berteotti C; Bojic T; Cianci T; Ferrari V; Franzini C; Lenzi P; Zoccoli G
    J Cereb Blood Flow Metab; 2005 Aug; 25(8):990-7. PubMed ID: 15758946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor.
    Datta S
    J Neurophysiol; 2002 Apr; 87(4):1790-8. PubMed ID: 11929900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle.
    Nishida M; Uchida S; Hirai N; Miwakeichi F; Maehara T; Kawai K; Shimizu H; Kato S
    Neurosci Lett; 2005 May; 379(2):110-5. PubMed ID: 15823426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid release from the rat oral pontine reticular nucleus across the sleep-wakefulness cycle.
    Hasegawa T; Azum S; Inoué S
    J Med Dent Sci; 2000 Mar; 47(1):87-93. PubMed ID: 12162531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation.
    Vyazovskiy VV; Borbély AA; Tobler I
    J Neurophysiol; 2002 Nov; 88(5):2280-6. PubMed ID: 12424269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sleep stage and wakefulness on spectral EEG activity and heart rate variations around periodic leg movements.
    Lavoie S; de Bilbao F; Haba-Rubio J; Ibanez V; Sforza E
    Clin Neurophysiol; 2004 Oct; 115(10):2236-46. PubMed ID: 15351364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats.
    Chu M; Huang ZL; Qu WM; Eguchi N; Yao MH; Urade Y
    Neurosci Res; 2004 Aug; 49(4):417-20. PubMed ID: 15236867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiopulmonary interactions following REM sleep deprivation in Sprague-Dawley rats.
    Radulovacki M; Trbovic SM; Carley DW
    Exp Neurol; 1997 Jun; 145(2 Pt 1):371-5. PubMed ID: 9217073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropeptide-Y Y2-receptor agonist, PYY3-36 promotes non-rapid eye movement sleep in rat.
    Akanmu MA; Ukponmwan OE; Katayama Y; Honda K
    Neurosci Res; 2006 Mar; 54(3):165-70. PubMed ID: 16378653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of GABA(A) antagonist bicuculline on dorsal raphe nucleus and frontal cortex extracellular serotonin: a window on SWS and REM sleep modulation.
    Fiske E; Grønli J; Bjorvatn B; Ursin R; Portas CM
    Pharmacol Biochem Behav; 2006 Feb; 83(2):314-21. PubMed ID: 16554087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep.
    Ouyang M; Hellman K; Abel T; Thomas SA
    J Neurophysiol; 2004 Oct; 92(4):2071-82. PubMed ID: 15190089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.