BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17174885)

  • 1. In vino veritas: a tale of two sirt1s?
    Koo SH; Montminy M
    Cell; 2006 Dec; 127(6):1091-3. PubMed ID: 17174885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.
    Lagouge M; Argmann C; Gerhart-Hines Z; Meziane H; Lerin C; Daussin F; Messadeq N; Milne J; Lambert P; Elliott P; Geny B; Laakso M; Puigserver P; Auwerx J
    Cell; 2006 Dec; 127(6):1109-22. PubMed ID: 17112576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
    Rodgers JT; Lerin C; Haas W; Gygi SP; Spiegelman BM; Puigserver P
    Nature; 2005 Mar; 434(7029):113-8. PubMed ID: 15744310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic benefits from Sirt1 and Sirt1 activators.
    Chaudhary N; Pfluger PT
    Curr Opin Clin Nutr Metab Care; 2009 Jul; 12(4):431-7. PubMed ID: 19474719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.
    Liu Y; Dentin R; Chen D; Hedrick S; Ravnskjaer K; Schenk S; Milne J; Meyers DJ; Cole P; Yates J; Olefsky J; Guarente L; Montminy M
    Nature; 2008 Nov; 456(7219):269-73. PubMed ID: 18849969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}.
    Nemoto S; Fergusson MM; Finkel T
    J Biol Chem; 2005 Apr; 280(16):16456-60. PubMed ID: 15716268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver.
    You M; Liang X; Ajmo JM; Ness GC
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G892-8. PubMed ID: 18239056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes.
    Yang SJ; Choi JM; Kim L; Park SE; Rhee EJ; Lee WY; Oh KW; Park SW; Park CY
    J Nutr Biochem; 2014 Jan; 25(1):66-72. PubMed ID: 24314867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirtuins: novel targets for metabolic disease in drug development.
    Jiang WJ
    Biochem Biophys Res Commun; 2008 Aug; 373(3):341-4. PubMed ID: 18577374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cheers !].
    Labie D; Ferré P
    Med Sci (Paris); 2007 Feb; 23(2):122. PubMed ID: 17291416
    [No Abstract]   [Full Text] [Related]  

  • 12. Resveratrol exerts pharmacological preconditioning by activating PGC-1alpha.
    Tan L; Yu JT; Guan HS
    Med Hypotheses; 2008 Nov; 71(5):664-7. PubMed ID: 18694626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirtuins: novel targets for metabolic disease.
    Elliott PJ; Jirousek M
    Curr Opin Investig Drugs; 2008 Apr; 9(4):371-8. PubMed ID: 18393104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1.
    Rodgers JT; Puigserver P
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12861-6. PubMed ID: 17646659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease.
    Ho DJ; Calingasan NY; Wille E; Dumont M; Beal MF
    Exp Neurol; 2010 Sep; 225(1):74-84. PubMed ID: 20561979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
    Cantó C; Gerhart-Hines Z; Feige JN; Lagouge M; Noriega L; Milne JC; Elliott PJ; Puigserver P; Auwerx J
    Nature; 2009 Apr; 458(7241):1056-60. PubMed ID: 19262508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction.
    Al-Regaiey KA; Masternak MM; Bonkowski M; Sun L; Bartke A
    Endocrinology; 2005 Feb; 146(2):851-60. PubMed ID: 15498882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
    Dominy JE; Lee Y; Jedrychowski MP; Chim H; Jurczak MJ; Camporez JP; Ruan HB; Feldman J; Pierce K; Mostoslavsky R; Denu JM; Clish CB; Yang X; Shulman GI; Gygi SP; Puigserver P
    Mol Cell; 2012 Dec; 48(6):900-13. PubMed ID: 23142079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtuin activators.
    Alcaín FJ; Villalba JM
    Expert Opin Ther Pat; 2009 Apr; 19(4):403-14. PubMed ID: 19441923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.
    Howitz KT; Bitterman KJ; Cohen HY; Lamming DW; Lavu S; Wood JG; Zipkin RE; Chung P; Kisielewski A; Zhang LL; Scherer B; Sinclair DA
    Nature; 2003 Sep; 425(6954):191-6. PubMed ID: 12939617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.