These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17174919)

  • 1. Neural correlates of internal-model loading.
    Bursztyn LL; Ganesh G; Imamizu H; Kawato M; Flanagan JR
    Curr Biol; 2006 Dec; 16(24):2440-5. PubMed ID: 17174919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central control of grasp: manipulation of objects with complex and simple dynamics.
    Milner TE; Franklin DW; Imamizu H; Kawato M
    Neuroimage; 2007 Jun; 36(2):388-95. PubMed ID: 17451973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural substrates of knowledge of hand postures for object grasping and functional object use: evidence from fMRI.
    Buxbaum LJ; Kyle KM; Tang K; Detre JA
    Brain Res; 2006 Oct; 1117(1):175-85. PubMed ID: 16962075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central representation of dynamics when manipulating handheld objects.
    Milner TE; Franklin DW; Imamizu H; Kawato M
    J Neurophysiol; 2006 Feb; 95(2):893-901. PubMed ID: 16251266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal models for bi-manual tasks.
    Witney AG
    Hum Mov Sci; 2004 Nov; 23(5):747-70. PubMed ID: 15589630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holding an object: neural activity associated with fingertip force adjustments to external perturbations.
    Ehrsson HH; Fagergren A; Ehrsson GO; Forssberg H
    J Neurophysiol; 2007 Feb; 97(2):1342-52. PubMed ID: 16914607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human cerebellar activity reflecting an acquired internal model of a new tool.
    Imamizu H; Miyauchi S; Tamada T; Sasaki Y; Takino R; Pütz B; Yoshioka T; Kawato M
    Nature; 2000 Jan; 403(6766):192-5. PubMed ID: 10646603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential cortical activity for precision and whole-hand visually guided grasping in humans.
    Begliomini C; Wall MB; Smith AT; Castiello U
    Eur J Neurosci; 2007 Feb; 25(4):1245-52. PubMed ID: 17331220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force level independent representations of predictive grip force-load force coupling: a PET activation study.
    Boecker H; Lee A; Mühlau M; Ceballos-Baumann A; Ritzl A; Spilker ME; Marquart C; Hermsdörfer J
    Neuroimage; 2005 Mar; 25(1):243-52. PubMed ID: 15734359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain activation pattern according to exercise complexity: a functional MRI study.
    Park JW; Kwon YH; Lee MY; Bai D; Nam KS; Cho YW; Lee CH; Jang SH
    NeuroRehabilitation; 2008; 23(3):283-8. PubMed ID: 18560146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential representation of dynamic and static power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Kollias SS
    Eur J Neurosci; 2010 Apr; 31(8):1483-91. PubMed ID: 20384781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA
    Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting.
    Nowak DA; Berner J; Herrnberger B; Kammer T; Grön G; Schönfeldt-Lecuona C
    Cortex; 2009 Apr; 45(4):473-82. PubMed ID: 18400218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural basis of selection-for-action.
    Chapman H; Pierno AC; Cunnington R; Gavrilescu M; Egan G; Castiello U
    Neurosci Lett; 2007 May; 417(2):171-5. PubMed ID: 17412509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor experience with graspable objects reduces their implicit analysis in visual- and motor-related cortex.
    Handy TC; Tipper CM; Schaich Borg J; Grafton ST; Gazzaniga MS
    Brain Res; 2006 Jun; 1097(1):156-66. PubMed ID: 16764830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of complex action knowledge on representations of novel graspable objects: evidence from functional magnetic resonance imaging.
    Creem-Regehr SH; Dilda V; Vicchrilli AE; Federer F; Lee JN
    J Int Neuropsychol Soc; 2007 Nov; 13(6):1009-20. PubMed ID: 17942019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial representation of predictive motor learning.
    Witney AG; Wolpert DM
    J Neurophysiol; 2003 Apr; 89(4):1837-43. PubMed ID: 12686568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.