These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17174919)

  • 21. Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions.
    Belardinelli P; Ciancetta L; Staudt M; Pizzella V; Londei A; Birbaumer N; Romani GL; Braun C
    Neuroimage; 2007 Oct; 37(4):1301-14. PubMed ID: 17669666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal feature of BOLD responses varies with temporal patterns of movement.
    Tomatsu S; Someya Y; Sung YW; Ogawa S; Kakei S
    Neurosci Res; 2008 Nov; 62(3):160-7. PubMed ID: 18789981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain activity is similar during precision and power gripping with light force: an fMRI study.
    Kuhtz-Buschbeck JP; Gilster R; Wolff S; Ulmer S; Siebner H; Jansen O
    Neuroimage; 2008 May; 40(4):1469-81. PubMed ID: 18316207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM.
    Grefkes C; Eickhoff SB; Nowak DA; Dafotakis M; Fink GR
    Neuroimage; 2008 Jul; 41(4):1382-94. PubMed ID: 18486490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurofunctional modulation of brain regions by the observation of pointing and grasping actions.
    Pierno AC; Tubaldi F; Turella L; Grossi P; Barachino L; Gallo P; Castiello U
    Cereb Cortex; 2009 Feb; 19(2):367-74. PubMed ID: 18534989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling.
    Kawato M; Kuroda T; Imamizu H; Nakano E; Miyauchi S; Yoshioka T
    Prog Brain Res; 2003; 142():171-88. PubMed ID: 12693261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the neural correlates underlying action observation in multiple sclerosis patients.
    Pierno AC; Turella L; Grossi P; Tubaldi F; Calabrese M; Perini P; Barachino L; Morra A; Gallo P; Castiello U
    Exp Neurol; 2009 Jun; 217(2):252-7. PubMed ID: 19285072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control strategies correcting inaccurately programmed fingertip forces: model predictions derived from human behavior.
    Fagergren A; Ekeberg O; Forssberg H
    J Neurophysiol; 2003 Jun; 89(6):2904-16. PubMed ID: 12783946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model-free analysis of brain fMRI data by recurrence quantification.
    Bianciardi M; Sirabella P; Hagberg GE; Giuliani A; Zbilut JP; Colosimo A
    Neuroimage; 2007 Aug; 37(2):489-503. PubMed ID: 17600730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor learning affects visual movement perception.
    Engel A; Burke M; Fiehler K; Bien S; Rösler F
    Eur J Neurosci; 2008 May; 27(9):2294-302. PubMed ID: 18445220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural correlates of two imagined egocentric transformations.
    Creem-Regehr SH; Neil JA; Yeh HJ
    Neuroimage; 2007 Apr; 35(2):916-27. PubMed ID: 17275336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural substrates of contextual interference during motor learning support a model of active preparation.
    Cross ES; Schmitt PJ; Grafton ST
    J Cogn Neurosci; 2007 Nov; 19(11):1854-71. PubMed ID: 17958488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel technique for examining human brain activity associated with pedaling using fMRI.
    Mehta JP; Verber MD; Wieser JA; Schmit BD; Schindler-Ivens SM
    J Neurosci Methods; 2009 May; 179(2):230-9. PubMed ID: 19428532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FMRI adaptation during performance of learned arbitrary visuomotor conditional associations.
    Chouinard PA; Goodale MA
    Neuroimage; 2009 Dec; 48(4):696-706. PubMed ID: 19619662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Functional magnetic resonance imaging of whole brain related to motor preparation and execution].
    Wang MH; Zhu YH; Li JC; Weng XC
    Zhonghua Yi Xue Za Zhi; 2007 Apr; 87(14):971-4. PubMed ID: 17650422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dexterity in cerebellar agenesis.
    Nowak DA; Timmann D; Hermsdörfer J
    Neuropsychologia; 2007 Mar; 45(4):696-703. PubMed ID: 16979674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-paced frequency of a simple motor task and brain activation. An fMRI study in healthy subjects using an on-line monitor device.
    Diciotti S; Gavazzi C; Della Nave R; Boni E; Ginestroni A; Paoli L; Cecchi P; De Stefano N; Mascalchi M
    Neuroimage; 2007 Nov; 38(3):402-12. PubMed ID: 17878070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum.
    Ulloa A; Bullock D; Rhodes BJ
    Neural Netw; 2003; 16(5-6):521-8. PubMed ID: 12850003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.