BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17174969)

  • 1. Polymer-mediated chain-like self-assembly of functionalized gold nanoparticles.
    Bhattacharjee RR; Mandal TK
    J Colloid Interface Sci; 2007 Mar; 307(1):288-95. PubMed ID: 17174969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles.
    Si S; Mandal TK
    Langmuir; 2007 Jan; 23(1):190-5. PubMed ID: 17190503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination.
    Si S; Raula M; Paira TK; Mandal TK
    Chemphyschem; 2008 Aug; 9(11):1578-84. PubMed ID: 18615416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-dimensional network from the self-assembly of gold nanoparticles by a necklace-like polyelectrolyte template mediated by metallic ion coordination.
    Zhang J; Wang J; Xu X; Zhu H; Wang Z; Yang F; Zhang B; Yang X
    Nanotechnology; 2009 Jul; 20(29):295603. PubMed ID: 19567954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer.
    Azzam T; Eisenberg A
    Langmuir; 2007 Feb; 23(4):2126-32. PubMed ID: 17279704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible association of thermoresponsive gold nanoparticles: polyelectrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether).
    Bhattacharjee RR; Chakraborty M; Mandal TK
    J Phys Chem B; 2006 Apr; 110(13):6768-75. PubMed ID: 16570984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of multilayer films containing gold nanoparticles via hydrogen bonding.
    Jiang Y; Shen Y; Wu P
    J Colloid Interface Sci; 2008 Mar; 319(2):398-405. PubMed ID: 18187144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.
    de la Fuente JM; Alcántara D; Eaton P; Crespo P; Rojas TC; Fernandez A; Hernando A; Penadés S
    J Phys Chem B; 2006 Jul; 110(26):13021-8. PubMed ID: 16805609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved separation of double-stranded DNA fragments by capillary electrophoresis using poly(ethylene oxide) solution containing colloids.
    Huang MF; Huang CC; Chang HT
    Electrophoresis; 2003 Sep; 24(17):2896-902. PubMed ID: 12973792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y; Hosokawa K; Maeda M
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates.
    Zhang Q; Gupta S; Emrick T; Russell TP
    J Am Chem Soc; 2006 Mar; 128(12):3898-9. PubMed ID: 16551083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process.
    Li G; Yang X; Bai F; Huang W
    J Colloid Interface Sci; 2006 May; 297(2):705-10. PubMed ID: 16300776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic investigation of S-Ag interaction in omega-mercaptoundecanoic acid capped silver nanoparticles.
    Tripathy SK; Yu YT
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):841-4. PubMed ID: 19167270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of double-stranded DNA fragments by capillary electrophoresis: Impacts of poly(ethylene oxide), gold nanoparticles, ethidium bromide, and pH.
    Chiou SH; Huang MF; Chang HT
    Electrophoresis; 2004 Jul; 25(14):2186-92. PubMed ID: 15274002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsive polymer nanoparticles formed by poly(ether amine) containing coumarin units and a poly(ethylene oxide) short chain.
    Jiang X; Wang R; Ren Y; Yin J
    Langmuir; 2009 Sep; 25(17):9629-32. PubMed ID: 19642654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles functionalized with block copolymers displaying either LCST or UCST thermosensitivity in aqueous solution.
    Housni A; Zhao Y
    Langmuir; 2010 Aug; 26(15):12933-9. PubMed ID: 20604503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.