BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17175210)

  • 1. Age-related changes in trabecular bone microdamage initiation.
    Nagaraja S; Lin AS; Guldberg RE
    Bone; 2007 Apr; 40(4):973-80. PubMed ID: 17175210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial correlations of trabecular bone microdamage with local stresses and strains using rigid image registration.
    Nagaraja S; Skrinjar O; Guldberg RE
    J Biomech Eng; 2011 Jun; 133(6):064502. PubMed ID: 21744931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in human trabecular bone: Relationship between microstructural stress and strain and damage morphology.
    Green JO; Nagaraja S; Diab T; Vidakovic B; Guldberg RE
    J Biomech; 2011 Aug; 44(12):2279-85. PubMed ID: 21724189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three years of alendronate treatment does not continue to decrease microstructural stresses and strains associated with trabecular microdamage initiation beyond those at 1 year.
    Green JO; Diab T; Allen MR; Vidakovic B; Burr DB; Guldberg RE
    Osteoporos Int; 2012 Sep; 23(9):2313-20. PubMed ID: 22237815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar damage initiation but different failure behavior in trabecular and cortical bone tissue.
    Szabó ME; Zekonyte J; Katsamenis OL; Taylor M; Thurner PJ
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1787-96. PubMed ID: 22098878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
    Yeh OC; Keaveny TM
    J Orthop Res; 2001 Nov; 19(6):1001-7. PubMed ID: 11780997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
    Karim L; Vashishth D
    PLoS One; 2012; 7(4):e35047. PubMed ID: 22514706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One year of alendronate treatment lowers microstructural stresses associated with trabecular microdamage initiation.
    O'Neal JM; Diab T; Allen MR; Vidakovic B; Burr DB; Guldberg RE
    Bone; 2010 Aug; 47(2):241-7. PubMed ID: 20483387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling modulus reduction in bovine trabecular bone damaged in compression.
    Moore TL; Gibson LJ
    J Biomech Eng; 2001 Dec; 123(6):613-22. PubMed ID: 11783733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue microdamage in bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):769-76. PubMed ID: 14986400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdamage formation in individual bovine trabeculae during fatigue testing.
    Frank M; Fischer JT; Thurner PJ
    J Biomech; 2021 Jan; 115():110131. PubMed ID: 33257009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of architecture and estrogen depletion in microdamage risk in trabecular bone.
    Kreipke TC; Garrison JG; Easley J; Turner AS; Niebur GL
    J Biomech; 2016 Oct; 49(14):3223-3229. PubMed ID: 27544617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.