These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 17176061)
1. X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Sazinsky MH; Dunten PW; McCormick MS; DiDonato A; Lippard SJ Biochemistry; 2006 Dec; 45(51):15392-404. PubMed ID: 17176061 [TBL] [Abstract][Full Text] [Related]
2. Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1. McCormick MS; Lippard SJ Biochemistry; 2011 Dec; 50(51):11058-69. PubMed ID: 22136180 [TBL] [Abstract][Full Text] [Related]
3. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Wang W; Liang AD; Lippard SJ Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615 [TBL] [Abstract][Full Text] [Related]
4. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Tinberg CE; Song WJ; Izzo V; Lippard SJ Biochemistry; 2011 Mar; 50(11):1788-98. PubMed ID: 21366224 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the toluene/o-xylene monooxygenase hydroxylase from Pseudomonas stutzeri OX1. Insight into the substrate specificity, substrate channeling, and active site tuning of multicomponent monooxygenases. Sazinsky MH; Bard J; Di Donato A; Lippard SJ J Biol Chem; 2004 Jul; 279(29):30600-10. PubMed ID: 15096510 [TBL] [Abstract][Full Text] [Related]
6. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Cafaro V; Izzo V; Scognamiglio R; Notomista E; Capasso P; Casbarra A; Pucci P; Di Donato A Appl Environ Microbiol; 2004 Apr; 70(4):2211-9. PubMed ID: 15066815 [TBL] [Abstract][Full Text] [Related]
7. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]
8. Control of substrate access to the active site in methane monooxygenase. Lee SJ; McCormick MS; Lippard SJ; Cho US Nature; 2013 Feb; 494(7437):380-4. PubMed ID: 23395959 [TBL] [Abstract][Full Text] [Related]
9. Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): protein motion in the alpha-subunit. Sazinsky MH; Lippard SJ J Am Chem Soc; 2005 Apr; 127(16):5814-25. PubMed ID: 15839679 [TBL] [Abstract][Full Text] [Related]
10. A flexible glutamine regulates the catalytic activity of toluene o-xylene monooxygenase. Liang AD; Wrobel AT; Lippard SJ Biochemistry; 2014 Jun; 53(22):3585-92. PubMed ID: 24873259 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Elango N; Radhakrishnan R; Froland WA; Wallar BJ; Earhart CA; Lipscomb JD; Ohlendorf DH Protein Sci; 1997 Mar; 6(3):556-68. PubMed ID: 9070438 [TBL] [Abstract][Full Text] [Related]
12. Diiron oxidation state control of substrate access to the active site of soluble methane monooxygenase mediated by the regulatory component. Wang W; Lippard SJ J Am Chem Soc; 2014 Feb; 136(6):2244-7. PubMed ID: 24476336 [TBL] [Abstract][Full Text] [Related]
13. NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase. Müller J; Lugovskoy AA; Wagner G; Lippard SJ Biochemistry; 2002 Jan; 41(1):42-51. PubMed ID: 11772001 [TBL] [Abstract][Full Text] [Related]
14. Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Lippard SJ Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):861-77; discussion 1035-40. PubMed ID: 15901540 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. Whittington DA; Lippard SJ J Am Chem Soc; 2001 Feb; 123(5):827-38. PubMed ID: 11456616 [TBL] [Abstract][Full Text] [Related]
17. Structural consequences of effector protein complex formation in a diiron hydroxylase. Bailey LJ; McCoy JG; Phillips GN; Fox BG Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19194-8. PubMed ID: 19033467 [TBL] [Abstract][Full Text] [Related]
18. Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; McCormick MS; Davydov R; Naik SG; Kim SH; Hoffman BM; Huynh BH; Lippard SJ Biochemistry; 2007 Dec; 46(51):14795-809. PubMed ID: 18044971 [TBL] [Abstract][Full Text] [Related]
19. Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase. Lee C; Hwang Y; Kang HG; Lee SJ J Microbiol Biotechnol; 2022 Mar; 32(3):287-293. PubMed ID: 35131957 [TBL] [Abstract][Full Text] [Related]
20. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]