These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17176064)
1. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase: a kinetic study of the H172A mutant. Evans JP; Blackburn NJ; Klinman JP Biochemistry; 2006 Dec; 45(51):15419-29. PubMed ID: 17176064 [TBL] [Abstract][Full Text] [Related]
2. Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase: mechanistic implications. Francisco WA; Blackburn NJ; Klinman JP Biochemistry; 2003 Feb; 42(7):1813-9. PubMed ID: 12590568 [TBL] [Abstract][Full Text] [Related]
3. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase (PHM): a spectroscopic study of the H172A mutant. Jaron S; Mains RE; Eipper BA; Blackburn NJ Biochemistry; 2002 Nov; 41(44):13274-82. PubMed ID: 12403629 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic investigation of peptidylglycine alpha-hydroxylating monooxygenase via intrinsic tryptophan fluorescence and mutagenesis. Bell J; El Meskini R; D'Amato D; Mains RE; Eipper BA Biochemistry; 2003 Jun; 42(23):7133-42. PubMed ID: 12795609 [TBL] [Abstract][Full Text] [Related]
5. Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer Pathway in Peptidylglycine Monooxygenase. Chauhan S; Hosseinzadeh P; Lu Y; Blackburn NJ Biochemistry; 2016 Apr; 55(13):2008-21. PubMed ID: 26982589 [TBL] [Abstract][Full Text] [Related]
6. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the pathway for inter-copper electron transfer in peptidylglycine alpha-amidating monooxygenase. Francisco WA; Wille G; Smith AJ; Merkler DJ; Klinman JP J Am Chem Soc; 2004 Oct; 126(41):13168-9. PubMed ID: 15479039 [TBL] [Abstract][Full Text] [Related]
8. Long distance electron-transfer mechanism in peptidylglycine alpha-hydroxylating monooxygenase: a perfect fitting for a water bridge. de la Lande A; Martà S; Parisel O; Moliner V J Am Chem Soc; 2007 Sep; 129(38):11700-7. PubMed ID: 17764178 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction. Francisco WA; Merkler DJ; Blackburn NJ; Klinman JP Biochemistry; 1998 Jun; 37(22):8244-52. PubMed ID: 9609721 [TBL] [Abstract][Full Text] [Related]
11. HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch. Kline CD; Mayfield M; Blackburn NJ Biochemistry; 2013 Apr; 52(15):2586-96. PubMed ID: 23530865 [TBL] [Abstract][Full Text] [Related]
12. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
13. Peptidylglycine alpha-hydroxylating monooxygenase: active site residues, disulfide linkages, and a two-domain model of the catalytic core. Kolhekar AS; Keutmann HT; Mains RE; Quon AS; Eipper BA Biochemistry; 1997 Sep; 36(36):10901-9. PubMed ID: 9283080 [TBL] [Abstract][Full Text] [Related]
14. Structural investigations on the coordination environment of the active-site copper centers of recombinant bifunctional peptidylglycine alpha-amidating enzyme. Boswell JS; Reedy BJ; Kulathila R; Merkler D; Blackburn NJ Biochemistry; 1996 Sep; 35(38):12241-50. PubMed ID: 8823157 [TBL] [Abstract][Full Text] [Related]
15. The catalytic copper of peptidylglycine alpha-hydroxylating monooxygenase also plays a critical structural role. Siebert X; Eipper BA; Mains RE; Prigge ST; Blackburn NJ; Amzel LM Biophys J; 2005 Nov; 89(5):3312-9. PubMed ID: 16100265 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands. Gherman BF; Tolman WB; Cramer CJ J Comput Chem; 2006 Dec; 27(16):1950-61. PubMed ID: 17019721 [TBL] [Abstract][Full Text] [Related]
17. Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase. Poater A; Cavallo L Inorg Chem; 2009 May; 48(9):4062-6. PubMed ID: 19331376 [TBL] [Abstract][Full Text] [Related]
18. How do copper enzymes hydroxylate aliphatic substrates? Recent insights from the chemistry of model systems. Rolff M; Tuczek F Angew Chem Int Ed Engl; 2008; 47(13):2344-7. PubMed ID: 18330847 [No Abstract] [Full Text] [Related]