BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 17176091)

  • 21. Insight into potential Cu(II)-binding motifs in the four pseudorepeats of tau protein.
    Shin BK; Saxena S
    J Phys Chem B; 2011 Dec; 115(50):15067-78. PubMed ID: 22085212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury(II) promotes the in vitro aggregation of tau fragment corresponding to the second repeat of microtubule-binding domain: Coordination and conformational transition.
    Yang DJ; Shi S; Zheng LF; Yao TM; Ji LN
    Biopolymers; 2010 Dec; 93(12):1100-7. PubMed ID: 20665688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment.
    Berry RW; Abraha A; Lagalwar S; LaPointe N; Gamblin TC; Cryns VL; Binder LI
    Biochemistry; 2003 Jul; 42(27):8325-31. PubMed ID: 12846581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational transition state is responsible for assembly of microtubule-binding domain of tau protein.
    Hiraoka S; Yao TM; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T
    Biochem Biophys Res Commun; 2004 Mar; 315(3):659-63. PubMed ID: 14975751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron microscopy as a quantitative method for investigating tau fibrillization.
    Necula M; Kuret J
    Anal Biochem; 2004 Jun; 329(2):238-46. PubMed ID: 15158482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Granular tau oligomers as intermediates of tau filaments.
    Maeda S; Sahara N; Saito Y; Murayama M; Yoshiike Y; Kim H; Miyasaka T; Murayama S; Ikai A; Takashima A
    Biochemistry; 2007 Mar; 46(12):3856-61. PubMed ID: 17338548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display.
    Malhis M; Kaniyappan S; Aillaud I; Chandupatla RR; Ramirez LM; Zweckstetter M; Horn AHC; Mandelkow E; Sticht H; Funke SA
    Chembiochem; 2021 Nov; 22(21):3049-3059. PubMed ID: 34375027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation.
    Taniguchi T; Sumida M; Hiraoka S; Tomoo K; Kakehi T; Minoura K; Sugiyama S; Inaka K; Ishida T; Saito N; Tanaka C
    FEBS Lett; 2005 Feb; 579(6):1399-404. PubMed ID: 15733848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model.
    Viswanathan GK; Shwartz D; Losev Y; Arad E; Shemesh C; Pichinuk E; Engel H; Raveh A; Jelinek R; Cooper I; Gosselet F; Gazit E; Segal D
    Cell Mol Life Sci; 2020 Jul; 77(14):2795-2813. PubMed ID: 31562564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The self-assembly ability of the first microtubule-binding repeat from tau and its modulation by phosphorylation.
    Zhou LX; Zeng ZY; Du JT; Zhao YF; Li YM
    Biochem Biophys Res Commun; 2006 Sep; 348(2):637-42. PubMed ID: 16889747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quinones facilitate the self-assembly of the phosphorylated tubulin binding region of tau into fibrillar polymers.
    Santa-María I; Hernández F; Martín CP; Avila J; Moreno FJ
    Biochemistry; 2004 Mar; 43(10):2888-97. PubMed ID: 15005624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The solution structure of the C-terminal segment of tau protein.
    Esposito G; Viglino P; Novak M; Cattaneo A
    J Pept Sci; 2000 Nov; 6(11):550-9. PubMed ID: 11147714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of tau in cerebrospinal fluid using mass spectrometry.
    Portelius E; Hansson SF; Tran AJ; Zetterberg H; Grognet P; Vanmechelen E; Höglund K; Brinkmalm G; Westman-Brinkmalm A; Nordhoff E; Blennow K; Gobom J
    J Proteome Res; 2008 May; 7(5):2114-20. PubMed ID: 18351740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High level of aspartic acid-bond isomerization during the synthesis of an N-linked tau glycopeptide.
    Hoffmann R; Craik DJ; Bokonyi K; Varga I; Otvos L
    J Pept Sci; 1999 Oct; 5(10):442-56. PubMed ID: 10580643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6.
    Fanni AM; Vander Zanden CM; Majewska PV; Majewski J; Chi EY
    J Biol Chem; 2019 Oct; 294(42):15304-15317. PubMed ID: 31439664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary Fibril Nucleation of Aggregation Prone Tau Fragments PHF6 and PHF6.
    Smit FX; Luiken JA; Bolhuis PG
    J Phys Chem B; 2017 Apr; 121(15):3250-3261. PubMed ID: 27776213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-specific pseudophosphorylation modulates the rate of tau filament dissociation.
    Necula M; Kuret J
    FEBS Lett; 2005 Feb; 579(6):1453-7. PubMed ID: 15733856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro tau fibrillization: mapping protein regions.
    Santa-María I; Pérez M; Hernández F; Muñoz V; Moreno FJ; Avila J
    Biochim Biophys Acta; 2006 Jul; 1762(7):683-92. PubMed ID: 16891100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis.
    von Bergen M; Barghorn S; Müller SA; Pickhardt M; Biernat J; Mandelkow EM; Davies P; Aebi U; Mandelkow E
    Biochemistry; 2006 May; 45(20):6446-57. PubMed ID: 16700555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.