BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17176484)

  • 21. Maternal Tgif1 regulates nodal gene expression in Xenopus.
    Kerr TC; Cuykendall TN; Luettjohann LC; Houston DW
    Dev Dyn; 2008 Oct; 237(10):2862-73. PubMed ID: 18816846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B.
    Piepenburg O; Grimmer D; Williams PH; Smith JC
    Development; 2004 Oct; 131(20):4977-86. PubMed ID: 15371302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos.
    Cheong SM; Kim H; Han JK
    J Biol Chem; 2009 Jun; 284(25):17052-17060. PubMed ID: 19389709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XRASGRP2 is essential for blood vessel formation during Xenopus development.
    Suzuki K; Takahashi S; Haramoto Y; Onuma Y; Nagamine K; Okabayashi K; Hashizume K; Iwanaka T; Asashima M
    Int J Dev Biol; 2010; 54(4):609-15. PubMed ID: 19598105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constitutive over-expression of VEGF results in reduced expression of Hand-1 during cardiac development in Xenopus.
    Nagao K; Taniyama Y; Koibuchi N; Morishita R
    Biochem Biophys Res Commun; 2007 Aug; 359(3):431-7. PubMed ID: 17544370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
    Chang C; Harland RM
    Development; 2007 Nov; 134(21):3861-72. PubMed ID: 17933792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When cells take fate into their own hands: differential competence to respond to inducing signals generates diversity in the embryonic mesoderm.
    Christian JL; Moon RT
    Bioessays; 1993 Feb; 15(2):135-40. PubMed ID: 8471058
    [No Abstract]   [Full Text] [Related]  

  • 28. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis.
    Kälin RE; Kretz MP; Meyer AM; Kispert A; Heppner FL; Brändli AW
    Dev Biol; 2007 May; 305(2):599-614. PubMed ID: 17412318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frizzled-10 promotes sensory neuron development in Xenopus embryos.
    Garcia-Morales C; Liu CH; Abu-Elmagd M; Hajihosseini MK; Wheeler GN
    Dev Biol; 2009 Nov; 335(1):143-55. PubMed ID: 19716814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis.
    Shibata T; Takahashi Y; Tasaki J; Saito Y; Izutsu Y; Maéno M
    Mech Dev; 2008; 125(3-4):284-98. PubMed ID: 18093808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development.
    Kazanskaya O; Ohkawara B; Heroult M; Wu W; Maltry N; Augustin HG; Niehrs C
    Development; 2008 Nov; 135(22):3655-64. PubMed ID: 18842812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of the embryonic body plan by activin during amphibian development.
    Ariizumi T; Asashima M
    Zoolog Sci; 1995 Oct; 12(5):509-21. PubMed ID: 8590829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dorsal axis duplication as a functional readout for Wnt activity.
    Kühl M; Pandur P
    Methods Mol Biol; 2008; 469():467-76. PubMed ID: 19109726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of VEGF on blood vessels and blood cells during Xenopus development.
    Koibuchi N; Taniyama Y; Nagao K; Ogihara T; Kaneda Y; Morishita R
    Biochem Biophys Res Commun; 2006 May; 344(1):339-45. PubMed ID: 16630570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos.
    Yuan L; Cao Y; Knöchel W
    Dev Dyn; 2007 Oct; 236(10):2844-51. PubMed ID: 17849439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Important genes during early development of Xenopus laevis].
    Uchiyama H; Asashima M
    Tanpakushitsu Kakusan Koso; 1993 Nov; 38(15):2443-55. PubMed ID: 8284441
    [No Abstract]   [Full Text] [Related]  

  • 38. Wnt-frizzled interactions in Xenopus.
    Steinbeisser H; Swain RK
    Methods Mol Biol; 2008; 469():451-63. PubMed ID: 19109725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos.
    Schuff M; Rössner A; Donow C; Knöchel W
    Int J Dev Biol; 2006; 50(4):429-34. PubMed ID: 16525939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RCAN1 regulates vascular branching during Xenopus laevis angiogenesis.
    Fujiwara M; Hasebe T; Kajita M; Ishizuya-Oka A; Ghazizadeh M; Kawanami O
    J Vasc Res; 2011; 48(2):104-18. PubMed ID: 20926891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.