BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1717656)

  • 1. Regulation of cyclic AMP levels by calcium in bovine adrenal medullary cells.
    Keogh R; Marley PD
    J Neurochem; 1991 Nov; 57(5):1721-8. PubMed ID: 1717656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells.
    Marley PD; Thomson KA; Jachno K; Johnston MJ
    Br J Pharmacol; 1991 Dec; 104(4):839-46. PubMed ID: 1725765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinoceptor regulation of cyclic AMP levels in bovine adrenal medullary cells.
    Anderson K; Robinson PJ; Marley PD
    Br J Pharmacol; 1992 Jun; 106(2):360-6. PubMed ID: 1382780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP enhances acetylcholine (ACh)-induced ion fluxes and catecholamine release by inhibiting Na+, K(+)-ATPase and participates in the responses to ACh in cultured bovine adrenal medullary chromaffin cells.
    Morita K; Minami N; Suemitsu T; Miyasako T; Dohi T
    J Neural Transm Gen Sect; 1995; 100(1):17-26. PubMed ID: 8748660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regulations by calcium of cyclic GMP levels and catecholamine secretion in isolated bovine adrenal chromaffin cells.
    Lemaire S; Derome G; Tseng R; Mercier P; Lemaire I
    Metabolism; 1981 May; 30(5):462-8. PubMed ID: 6262600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cyclic AMP metabolism in bovine adrenal medullary cells.
    Marley PD; Thomson KA
    Biochem Pharmacol; 1992 Dec; 44(11):2105-10. PubMed ID: 1335250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP and the nicotinic response of bovine adrenal chromaffin cells.
    Dubin AE; Rathouz MM; Mapp KS; Berg DK
    Brain Res; 1992 Jul; 586(2):344-7. PubMed ID: 1381655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cyclic AMP levels by phorbol esters in bovine adrenal medullary cells.
    Marley PD; Thomson KA; Hoy K; Maccarone P
    Eur J Pharmacol; 1993 Jan; 244(1):7-14. PubMed ID: 7678399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pituitary adenylate cyclase-activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells.
    Tanaka K; Shibuya I; Uezono Y; Ueta Y; Toyohira Y; Yanagihara N; Izumi F; Kanno T; Yamashita H
    J Neurochem; 1998 Apr; 70(4):1652-61. PubMed ID: 9523583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pertussis-toxin-sensitive protein controls exocytosis in chromaffin cells at a step distal to the generation of second messengers.
    Sontag JM; Thierse D; Rouot B; Aunis D; Bader MF
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):339-47. PubMed ID: 1848752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergism between toxin-gamma from Brazilian scorpion Tityus serrulatus and veratridine in chromaffin cells.
    Conceicao IM; Lebrun I; Cano-Abad M; Gandia L; Hernandez-Guijo JM; Lopez MG; Villarroya M; Jurkiewicz A; Garcia AG
    Am J Physiol; 1998 Jun; 274(6):C1745-54. PubMed ID: 9611141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of forskolin and prostaglandin E1 on stimulus secretion coupling in cultured bovine adrenal chromaffin cells.
    Marriott D; Adams M; Boarder MR
    J Neurochem; 1988 Feb; 50(2):616-23. PubMed ID: 2826702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ca2+ channel antagonists on chromaffin cell death and cytosolic Ca2+ oscillations induced by veratridine.
    Maroto R; De la Fuente MT; Artalejo AR; Abad F; López MG; García-Sancho J; García AG
    Eur J Pharmacol; 1994 Aug; 270(4):331-9. PubMed ID: 7805782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of release of catecholamine and other granular contents from perifused adrenal chromaffin cells of guinea-pig.
    Ito S
    J Physiol; 1983 Aug; 341():153-67. PubMed ID: 6620178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal medullary chromaffin cells.
    Isobe K; Nakai T; Takuwa Y
    Endocrinology; 1993 Apr; 132(4):1757-65. PubMed ID: 8384995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells.
    Masuda Y; Yoshizumi M; Ishimura Y; Katoh I; Oka M
    Biochem Pharmacol; 1994 May; 47(10):1751-8. PubMed ID: 7515621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin in cultured adrenal medullary cells. Molecular mechanisms and nature of second messenger systems.
    Stachowiak MK; Jiang HK; Poisner AM; Tuominen RK; Hong JS
    J Biol Chem; 1990 Mar; 265(8):4694-702. PubMed ID: 1968464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasoactive intestinal peptide elevates cyclic AMP levels and potentiates secretion in bovine adrenal chromaffin cells.
    Wilson SP
    Neuropeptides; 1988 Jan; 11(1):17-21. PubMed ID: 2835702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretion of [Met]enkephalyl-Arg6-Phe7-related peptides and catecholamines from bovine adrenal chromaffin cells: modification by changes in cyclic AMP and by treatment with reserpine.
    Adams M; Boarder MR
    J Neurochem; 1987 Jul; 49(1):208-15. PubMed ID: 3035096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.