These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17176749)

  • 1. Synthesis of nanostructured bio-related materials by hybridization of synthetic polymers with polysaccharides or saccharide residues.
    Kaneko Y; Kadokawa J
    J Biomater Sci Polym Ed; 2006; 17(11):1269-84. PubMed ID: 17176749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of chain-end functionalized glycopolymers for site-specific bioconjugation.
    Hou S; Sun XL; Dong CM; Chaikof EL
    Bioconjug Chem; 2004; 15(5):954-9. PubMed ID: 15366947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer.
    Dane EL; Grinstaff MW
    J Am Chem Soc; 2012 Oct; 134(39):16255-64. PubMed ID: 22937875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.
    Pelegri-O'Day EM; Maynard HD
    Acc Chem Res; 2016 Sep; 49(9):1777-85. PubMed ID: 27588677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of glycopolymers by controlled radical polymerization techniques and their applications.
    Vázquez-Dorbatt V; Lee J; Lin EW; Maynard HD
    Chembiochem; 2012 Nov; 13(17):2478-87. PubMed ID: 23132748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycopolymer code: synthesis of glycopolymers and multivalent carbohydrate-lectin interactions.
    Becer CR
    Macromol Rapid Commun; 2012 May; 33(9):742-52. PubMed ID: 22508520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems.
    Ahmed M; Narain R
    Biomaterials; 2011 Aug; 32(22):5279-90. PubMed ID: 21529936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic construction of sugar-amino acid hybrid polymers involving globotriaose or lactose and evaluation of their biological activities against Shiga toxins produced by Escherichia coli O157:H7.
    Matsuoka K; Nishikawa K; Goshu Y; Koyama T; Hatano K; Matsushita T; Watanabe-Takahashi M; Natori Y; Terunuma D
    Bioorg Med Chem; 2018 Dec; 26(22):5792-5803. PubMed ID: 30420327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled polymerization for the development of bioconjugate polymers and materials.
    Miura Y
    J Mater Chem B; 2020 Mar; 8(10):2010-2019. PubMed ID: 32073035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.
    Rother M; Nussbaumer MG; Renggli K; Bruns N
    Chem Soc Rev; 2016 Nov; 45(22):6213-6249. PubMed ID: 27426103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex nanostructured materials from segmented copolymers prepared by ATRP.
    Kowalewski T; McCullough RD; Matyjaszewski K
    Eur Phys J E Soft Matter; 2003 Jan; 10(1):5-16. PubMed ID: 15011074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic polysaccharide mimics via ring-opening metathesis polymerization.
    Wathier M; Stoddart SS; Sheehy MJ; Grinstaff MW
    J Am Chem Soc; 2010 Nov; 132(45):15887-9. PubMed ID: 20964329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa J
    Biomolecules; 2013 Jul; 3(3):369-85. PubMed ID: 24970172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Nanostructured Supramolecules through Helical Inclusion of Amylose toward Hydrophobic Polyester Guests, Biomimetically through Vine-Twining Polymerization Process.
    Kadokawa JI
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-defined oligosaccharide-terminated polymers from living radical polymerization.
    Haddleton DM; Ohno K
    Biomacromolecules; 2000; 1(2):152-6. PubMed ID: 11710093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-Defined Cationic N-[3-(Dimethylamino)propyl]methacrylamide Hydrochloride-Based (Co)polymers for siRNA Delivery.
    Singhsa P; Diaz-Dussan D; Manuspiya H; Narain R
    Biomacromolecules; 2018 Jan; 19(1):209-221. PubMed ID: 29195038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neoglycopolymers based on 4-vinyl-1,2,3-triazole monomers prepared by click chemistry.
    Hetzer M; Chen G; Barner-Kowollik C; Stenzel MH
    Macromol Biosci; 2010 Feb; 10(2):119-26. PubMed ID: 19731270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.