BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 17177256)

  • 1. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The receptor phosphatase HmLAR2 collaborates with focal adhesion proteins in filopodial tips to control growth cone morphology.
    Baker MW; Peterson SM; Macagno ER
    Dev Biol; 2008 Aug; 320(1):215-25. PubMed ID: 18582860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation-induced changes in filopodial dynamics determine the action radius of growth cones in the snail Helisoma trivolvis.
    Van Wagenen S; Cheng S; Rehder V
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):248-62. PubMed ID: 10602254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures.
    Kleitman N; Johnson MI
    Cell Motil Cytoskeleton; 1989; 13(4):288-300. PubMed ID: 2776225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the actin bundling protein fascin in growth cone morphogenesis: localization in filopodia and lamellipodia.
    Cohan CS; Welnhofer EA; Zhao L; Matsumura F; Yamashiro S
    Cell Motil Cytoskeleton; 2001 Feb; 48(2):109-20. PubMed ID: 11169763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimorphic growth cones in the embryonic medicinal leech: relationship between shape changes and outgrowth transitions.
    Kopp DM; Jellies J
    J Comp Neurol; 1993 Feb; 328(3):393-405. PubMed ID: 8440787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons.
    Welnhofer EA; Zhao L; Cohan CS
    Cell Motil Cytoskeleton; 1997; 37(1):54-71. PubMed ID: 9142439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis.
    Buettner HM
    Cell Motil Cytoskeleton; 1995; 32(3):187-204. PubMed ID: 8581975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of microtubules in the regulation of neuronal growth cone morphologic remodeling.
    Gallo G
    J Neurobiol; 1998 May; 35(2):121-40. PubMed ID: 9581969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubules and growth cone function.
    Gordon-Weeks PR
    J Neurobiol; 2004 Jan; 58(1):70-83. PubMed ID: 14598371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filopodial adhesion does not predict growth cone steering events in vivo.
    Isbister CM; O'Connor TP
    J Neurosci; 1999 Apr; 19(7):2589-600. PubMed ID: 10087072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of the receptor protein tyrosine phosphatase HmLAR2 in interbranch repulsion in a leech embryonic cell.
    Baker MW; Rauth SJ; Macagno ER
    J Neurobiol; 2000 Oct; 45(1):47-60. PubMed ID: 10992256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve growth dynamics. Quantitative models for nerve development and regeneration.
    Buettner HM
    Ann N Y Acad Sci; 1994 Nov; 745():210-21. PubMed ID: 7832510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones.
    Torreano PJ; Waterman-Storer CM; Cohan CS
    Cell Motil Cytoskeleton; 2005 Mar; 60(3):166-79. PubMed ID: 15700278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia.
    Sabo SL; McAllister AK
    Nat Neurosci; 2003 Dec; 6(12):1264-9. PubMed ID: 14608359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automated quantification of filopodial dynamics.
    Costantino S; Kent CB; Godin AG; Kennedy TE; Wiseman PW; Fournier AE
    J Neurosci Methods; 2008 Jun; 171(1):165-73. PubMed ID: 18394712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.