These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 17177288)
1. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. Yamane S; Iwasaki N; Kasahara Y; Harada K; Majima T; Monde K; Nishimura S; Minami A J Biomed Mater Res A; 2007 Jun; 81(3):586-93. PubMed ID: 17177288 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Jeong CG; Zhang H; Hollister SJ Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597 [TBL] [Abstract][Full Text] [Related]
4. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. Funakoshi T; Majima T; Iwasaki N; Yamane S; Masuko T; Minami A; Harada K; Tamura H; Tokura S; Nishimura S J Biomed Mater Res A; 2005 Sep; 74(3):338-46. PubMed ID: 16013058 [TBL] [Abstract][Full Text] [Related]
5. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Lee JE; Kim SE; Kwon IC; Ahn HJ; Cho H; Lee SH; Kim HJ; Seong SC; Lee MC Artif Organs; 2004 Sep; 28(9):829-39. PubMed ID: 15320946 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Iwasaki N; Yamane ST; Majima T; Kasahara Y; Minami A; Harada K; Nonaka S; Maekawa N; Tamura H; Tokura S; Shiono M; Monde K; Nishimura S Biomacromolecules; 2004; 5(3):828-33. PubMed ID: 15132668 [TBL] [Abstract][Full Text] [Related]
8. Chondrogenic properties of primary human chondrocytes culture in hyaluronic acid treated gelatin scaffold. Pruksakorn D; Khamwaen N; Pothacharoen P; Arpornchayanon O; Rojanasthien S; Kongtawelert P J Med Assoc Thai; 2009 Apr; 92(4):483-90. PubMed ID: 19374298 [TBL] [Abstract][Full Text] [Related]
9. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering]. Wu W; Mao T; Feng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888 [TBL] [Abstract][Full Text] [Related]
10. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Tan H; Wu J; Lao L; Gao C Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679 [TBL] [Abstract][Full Text] [Related]
14. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH; Park IK; Kim JM; Lee JH Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [TBL] [Abstract][Full Text] [Related]
16. [Preliminary study on chitosan/HAP bilayered scaffold]. Zhang H; Wang W; Chu D; Liu Y; Guan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
18. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. Matsiko A; Levingstone TJ; O'Brien FJ; Gleeson JP J Mech Behav Biomed Mater; 2012 Jul; 11():41-52. PubMed ID: 22658153 [TBL] [Abstract][Full Text] [Related]
19. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
20. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]