These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17177491)
1. Development of a rapid "fingerprinting" system for wine authenticity by mid-infrared spectroscopy. Bevin CJ; Fergusson AJ; Perry WB; Janik LJ; Cozzolino D J Agric Food Chem; 2006 Dec; 54(26):9713-8. PubMed ID: 17177491 [TBL] [Abstract][Full Text] [Related]
2. Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Bevin CJ; Dambergs RG; Fergusson AJ; Cozzolino D Anal Chim Acta; 2008 Jul; 621(1):19-23. PubMed ID: 18573365 [TBL] [Abstract][Full Text] [Related]
3. Discrimination between Shiraz wines from different Australian regions: the role of spectroscopy and chemometrics. Riovanto R; Cynkar WU; Berzaghi P; Cozzolino D J Agric Food Chem; 2011 Sep; 59(18):10356-60. PubMed ID: 21842866 [TBL] [Abstract][Full Text] [Related]
4. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336 [TBL] [Abstract][Full Text] [Related]
5. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. Cozzolino D; Smyth HE; Gishen M J Agric Food Chem; 2003 Dec; 51(26):7703-8. PubMed ID: 14664532 [TBL] [Abstract][Full Text] [Related]
6. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Cozzolino D; Parker M; Dambergs RG; Herderich M; Gishen M Biotechnol Bioeng; 2006 Dec; 95(6):1101-7. PubMed ID: 16817241 [TBL] [Abstract][Full Text] [Related]
7. Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples. Nieuwoudt HH; Prior BA; Pretorius IS; Manley M; Bauer FF J Agric Food Chem; 2004 Jun; 52(12):3726-35. PubMed ID: 15186089 [TBL] [Abstract][Full Text] [Related]
8. Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. Edelmann A; Diewok J; Schuster KC; Lendl B J Agric Food Chem; 2001 Mar; 49(3):1139-45. PubMed ID: 11312825 [TBL] [Abstract][Full Text] [Related]
9. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics. Fudge AL; Wilkinson KL; Ristic R; Cozzolino D J Agric Food Chem; 2012 Jan; 60(1):52-9. PubMed ID: 22129211 [TBL] [Abstract][Full Text] [Related]
10. [Discrimination of varieties of dry red wines based on independent component analysis and BP neural network]. Wu GF; Jiang YH; Wang YY; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1268-71. PubMed ID: 19650468 [TBL] [Abstract][Full Text] [Related]
11. Quantification of several 4-alkyl substituted gamma-lactones in Australian wines. Cooke RC; Capone DL; van Leeuwen KA; Elsey GM; Sefton MA J Agric Food Chem; 2009 Jan; 57(2):348-52. PubMed ID: 19154158 [TBL] [Abstract][Full Text] [Related]
12. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121 [TBL] [Abstract][Full Text] [Related]
13. Relationship between wine scores and visible-near-infrared spectra of Australian red wines. Cozzolino D; Cowey G; Lattey KA; Godden P; Cynkar WU; Dambergs RG; Janik L; Gishen M Anal Bioanal Chem; 2008 Jun; 391(3):975-81. PubMed ID: 18389223 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis. Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. Fernandez K; Agosin E J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445 [TBL] [Abstract][Full Text] [Related]
16. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression. Fragoso S; Aceña L; Guasch J; Mestres M; Busto O J Agric Food Chem; 2011 Oct; 59(20):10795-802. PubMed ID: 21905733 [TBL] [Abstract][Full Text] [Related]
17. Vintage year determination of bottled Chinese rice wine by VIS-NIR spectroscopy. Yu HY; Ying B; Sun T; Niu XY; Pan XX J Food Sci; 2007 Apr; 72(3):E125-9. PubMed ID: 17995801 [TBL] [Abstract][Full Text] [Related]
18. Characterization of wines by nuclear magnetic resonance: a work study on wines from the Basilicata region in Italy. Viggiani L; Morelli MA J Agric Food Chem; 2008 Sep; 56(18):8273-9. PubMed ID: 18693739 [TBL] [Abstract][Full Text] [Related]
19. [Discrimination of varieties of yellow wines using Vis/NIR spectroscopy]. Liu F; Wang L; He Y; Jiang YH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):586-9. PubMed ID: 18536418 [TBL] [Abstract][Full Text] [Related]
20. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy. Jensen JS; Egebo M; Meyer AS J Agric Food Chem; 2008 May; 56(10):3493-9. PubMed ID: 18442247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]