BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17177519)

  • 1. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells.
    Bouallagui Z; Sayadi S
    J Agric Food Chem; 2006 Dec; 54(26):9906-11. PubMed ID: 17177519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild photochemical synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol.
    Azabou S; Najjar W; Ghorbel A; Sayadi S
    J Agric Food Chem; 2007 Jun; 55(12):4877-82. PubMed ID: 17497879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol.
    Allouche N; Damak M; Ellouz R; Sayadi S
    Appl Environ Microbiol; 2004 Apr; 70(4):2105-9. PubMed ID: 15066802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain.
    Allouche N; Sayadi S
    J Agric Food Chem; 2005 Aug; 53(16):6525-30. PubMed ID: 16076144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase.
    Liebgott PP; Amouric A; Comte A; Tholozan JL; Lorquin J
    Res Microbiol; 2009 Dec; 160(10):757-66. PubMed ID: 19837158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst.
    Kaul P; Banerjee A; Banerjee UC
    Biomacromolecules; 2006 May; 7(5):1536-41. PubMed ID: 16677036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of
    Bouallagui Z; Sayadi S
    Biomed Res Int; 2018; 2018():7390751. PubMed ID: 30105240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxytyrosol acyl esters: biosynthesis and activities.
    Bouallagui Z; Bouaziz M; Lassoued S; Engasser JM; Ghoul M; Sayadi S
    Appl Biochem Biotechnol; 2011 Mar; 163(5):592-9. PubMed ID: 20862564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of lipase-catalyzed synthesis of acetylated tyrosol by response surface methodology.
    Aissa I; Bouaziz M; Ghamgui H; Kamoun A; Miled N; Sayadi S; Gargouri Y
    J Agric Food Chem; 2007 Dec; 55(25):10298-305. PubMed ID: 18001032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb).
    Braud A; Jézéquel K; Léger MA; Lebeau T
    Biotechnol Bioeng; 2006 Aug; 94(6):1080-8. PubMed ID: 16586510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DO-stat fed-batch production of 2-keto-D-gluconic acid from cassava using immobilized Pseudomonas aeruginosa.
    Chia M; Van Nguyen TB; Choi WJ
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):759-65. PubMed ID: 18256820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of hydroxytyrosol and tyrosol against oxidative stress in kidney cells.
    Loru D; Incani A; Deiana M; Corona G; Atzeri A; Melis MP; Rosa A; Dessì MA
    Toxicol Ind Health; 2009; 25(4-5):301-10. PubMed ID: 19651801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes.
    Pang Y; Zeng GM; Tang L; Zhang Y; Liu YY; Lei XX; Wu MS; Li Z; Liu C
    Bioresour Technol; 2011 Nov; 102(22):10733-6. PubMed ID: 21937224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24.
    Liebgott PP; Labat M; Casalot L; Amouric A; Lorquin J
    FEMS Microbiol Lett; 2007 Nov; 276(1):26-33. PubMed ID: 17937662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic routes for the production of mono- and di-glucosylated derivatives of hydroxytyrosol.
    Trincone A; Pagnotta E; Tramice A
    Bioresour Technol; 2012 Jul; 115():79-83. PubMed ID: 22093978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate immobilization of recombinant Escherichia coli whole cells harboring L-arabinose isomerase for L-ribulose production.
    Zhang YW; Prabhu P; Lee JK
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):741-8. PubMed ID: 19946709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol.
    Bernini R; Mincione E; Barontini M; Crisante F
    J Agric Food Chem; 2008 Oct; 56(19):8897-904. PubMed ID: 18771272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production.
    Hollá V; Hill R; Antošová M; Polakovič M
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):93-101. PubMed ID: 32816074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell immobilization technique for the enhanced production of alpha-galactosidase by Streptomyces griseoloalbus.
    Anisha GS; Prema P
    Bioresour Technol; 2008 Jun; 99(9):3325-30. PubMed ID: 17904364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.
    Mohapatra PK; Mondal KC; Pati BR
    J Appl Microbiol; 2007 Jun; 102(6):1462-7. PubMed ID: 17578410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.