These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17177527)

  • 1. Comparative study of protein stabilization in white wine using zirconia and bentonite: physicochemical and wine sensory analysis.
    Salazar FN; Achaerandio I; Labb MA; Gell C; Lpez F
    J Agric Food Chem; 2006 Dec; 54(26):9955-8. PubMed ID: 17177527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of bentonite additions during vinification on protein stability and volatile compounds of Albariño wines.
    Lira E; Rodríguez-Bencomo JJ; Salazar FN; Orriols I; Fornos D; López F
    J Agric Food Chem; 2015 Mar; 63(11):3004-11. PubMed ID: 25751284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. relationships with wine foamability.
    Dambrouck T; Marchal R; Cilindre C; Parmentier M; Jeandet P
    J Agric Food Chem; 2005 Nov; 53(22):8782-9. PubMed ID: 16248585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction.
    Saracino F; Brinco J; Gago D; Gomes da Silva M; Boavida Ferreira R; Ricardo-da-Silva J; Chagas R; Ferreira LM
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White wine continuous protein stabilization by packed column.
    Pashova V; Güell C; López F
    J Agric Food Chem; 2004 Mar; 52(6):1558-63. PubMed ID: 15030211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of carrageenan at different stages of winemaking for white wine protein stabilization.
    Marangon M; Stockdale VJ; Munro P; Trethewey T; Schulkin A; Holt HE; Smith PA
    J Agric Food Chem; 2013 Jul; 61(26):6516-24. PubMed ID: 23756713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pomace limits tannin retention in Frontenac wines.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2019 Mar; 277():438-447. PubMed ID: 30502168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of ochratoxin a levels in red wine by bentonite, modified bentonites, and chitosan.
    Kurtbay HM; Bekçi Z; Merdivan M; Yurdakoç K
    J Agric Food Chem; 2008 Apr; 56(7):2541-5. PubMed ID: 18321048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel protein stabilization in white wine: A study on thermally treated zirconia-alumina composites.
    Silva-Barbieri D; Escalona N; Salazar FN; López F; Pérez-Correa JR
    Food Res Int; 2024 Jun; 186():114337. PubMed ID: 38729718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wine Thermosensitive Proteins Adsorb First and Better on Bentonite during Fining: Practical Implications and Proposition of Alternative Heat Tests.
    Vernhet A; Meistermann E; Cottereau P; Charrier F; Chemardin P; Poncet-Legrand C
    J Agric Food Chem; 2020 Nov; 68(47):13450-13458. PubMed ID: 32142274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bentonite fining during fermentation reduces the dosage required and exhibits significant side-effects on phenols, free and bound aromas, and sensory quality of white wine.
    Horvat I; Radeka S; Plavša T; Lukić I
    Food Chem; 2019 Jul; 285():305-315. PubMed ID: 30797349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.
    Mazauric JP; Salmon JM
    J Agric Food Chem; 2005 Jul; 53(14):5647-53. PubMed ID: 15998128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining.
    Gonzalez-Ramos D; Quirós M; Gonzalez R
    J Agric Food Chem; 2009 Sep; 57(18):8373-8. PubMed ID: 19705828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of grape seeds to reduce haze formation in white wines.
    Romanini E; McRae JM; Bilogrevic E; Colangelo D; Gabrielli M; Lambri M
    Food Chem; 2021 Mar; 341(Pt 1):128250. PubMed ID: 33035860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Variability of polyphenol content in different types of wine and its potential application in the understanding of its biologic effects].
    Alvarez-Sala Walther LA; Slowing Barillas K; Gómez-Serranillos Cuadrado P; Torres Segovia F; Valderrama Rojas M; Millán Núñez-Cortés J
    Med Clin (Barc); 2000 Mar; 114(9):331-2. PubMed ID: 10786332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the structural features of commercial mannoproteins in white wine protein stabilization and chemical and sensory properties.
    Ribeiro T; Fernandes C; Nunes FM; Filipe-Ribeiro L; Cosme F
    Food Chem; 2014 Sep; 159():47-54. PubMed ID: 24767025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of lysozyme treatments on champagne base wine foaming properties.
    Marchal R; Chaboche D; Douillard R; Jeandet P
    J Agric Food Chem; 2002 Mar; 50(6):1420-8. PubMed ID: 11879014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the effect of macerating enzymes and pulsed electric fields technology on phenolic content and color of red wine.
    Puértolas E; Saldaña G; Condón S; Alvarez I; Raso J
    J Food Sci; 2009; 74(9):C647-52. PubMed ID: 20492096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive study on the effect of bentonite fining on wine charged model molecules.
    Pargoletti E; Sanarica L; Ceruti M; Elli F; Pisarra C; Cappelletti G
    Food Chem; 2021 Feb; 338():127840. PubMed ID: 32822903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.
    Mazauric JP; Salmon JM
    J Agric Food Chem; 2006 May; 54(11):3876-81. PubMed ID: 16719509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.