BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 17177538)

  • 1. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of wheat root exudates under aluminum stress.
    Wang P; Bi S; Wang S; Ding Q
    J Agric Food Chem; 2006 Dec; 54(26):10040-6. PubMed ID: 17177539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.
    Naik D; Smith E; Cumming JR
    Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.).
    Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J
    J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses.
    Bose J; Babourina O; Shabala S; Rengel Z
    Physiol Plant; 2010 Aug; 139(4):401-12. PubMed ID: 20444195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter.
    Piñeros MA; Cançado GM; Maron LG; Lyi SM; Menossi M; Kochian LV
    Plant J; 2008 Jan; 53(2):352-67. PubMed ID: 18069943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer.
    Kinraide TB; Parker DR; Zobel RW
    J Exp Bot; 2005 Jul; 56(417):1853-65. PubMed ID: 15928019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance.
    Tolrà R; Barceló J; Poschenrieder C
    J Inorg Biochem; 2009 Nov; 103(11):1486-90. PubMed ID: 19740545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different properties of SV channels in root vacuoles from near isogenic Al-tolerant and Al-sensitive wheat cultivars.
    Wherrett T; Shabala S; Pottosin I
    FEBS Lett; 2005 Dec; 579(30):6890-4. PubMed ID: 16337198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination.
    Kikui S; Sasaki T; Maekawa M; Miyao A; Hirochika H; Matsumoto H; Yamamoto Y
    J Inorg Biochem; 2005 Sep; 99(9):1837-44. PubMed ID: 16095709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.
    Li YY; Zhang YJ; Zhou Y; Yang JL; Zheng SJ
    J Integr Plant Biol; 2009 Jun; 51(6):574-80. PubMed ID: 19522816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress.
    Yang JL; Zheng SJ; He YF; Matsumoto H
    J Exp Bot; 2005 Apr; 56(414):1197-203. PubMed ID: 15737984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions.
    Zhang K; Zhou Q
    Environ Toxicol; 2005 Apr; 20(2):179-87. PubMed ID: 15793823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Organic acid secretion and its detoxification mechanism in plant roots under aluminum stress].
    You JF; Yang ZM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):111-8. PubMed ID: 15840928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum).
    Garcia-Oliveira AL; Martins-Lopes P; Tolrá R; Poschenrieder C; Tarquis M; Guedes-Pinto H; Benito C
    Physiol Plant; 2014 Nov; 152(3):441-52. PubMed ID: 24588850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance.
    Amenós M; Corrales I; Poschenrieder C; Illés P; Baluska F; Barceló J
    Plant Cell Physiol; 2009 Mar; 50(3):528-40. PubMed ID: 19176573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxic thio-malate is transported by both an aluminum-responsive malate efflux pathway in wheat and the MAE1 malate permease in Schizosaccharomyces pombe.
    Osawa H; Matsumoto H
    Planta; 2006 Jul; 224(2):462-71. PubMed ID: 16450171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al), copper (Cu), and selenate (SeO) in wheat roots: a descriptive and mathematical assessment.
    Kinraide TB; Hagermann AE
    Physiol Plant; 2010 May; 139(1):68-79. PubMed ID: 20059738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants.
    Ma JF
    Int Rev Cytol; 2007; 264():225-52. PubMed ID: 17964924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.