These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17177555)

  • 1. Stability of acidic egg white protein emulsions containing xanthan gum.
    Drakos A; Kiosseoglou V
    J Agric Food Chem; 2006 Dec; 54(26):10164-9. PubMed ID: 17177555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of food emulsions containing an advanced performance xanthan gum by microfluidization technique.
    Santos J; Calero N; Muñoz J; Cidade MT
    Food Sci Technol Int; 2018 Jul; 24(5):373-381. PubMed ID: 29417842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological investigations on the creaming of depletion-flocculated emulsions.
    Aben S; Holtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 May; 28(21):7967-75. PubMed ID: 22554128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of arabic gum and xanthan gum on the stability of pesticide in water emulsion.
    Zhang X; Liu J
    J Agric Food Chem; 2011 Feb; 59(4):1308-15. PubMed ID: 21226518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.
    Moschakis T; Murray BS; Dickinson E
    Langmuir; 2006 May; 22(10):4710-9. PubMed ID: 16649786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polysaccharides on the rate of coalescence in oil-in-water emulsions formed with highly hydrolyzed whey proteins.
    Ye A; Hemar Y; Singh H
    J Agric Food Chem; 2004 Aug; 52(17):5491-8. PubMed ID: 15315390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability, microstructural and rheological properties of Pickering emulsion stabilized by xanthan gum/lysozyme nanoparticles coupled with xanthan gum.
    Li Z; Zheng S; Zhao C; Liu M; Zhang Z; Xu W; Luo D; Shah BR
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2387-2394. PubMed ID: 33132128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of phase separation behavior, emulsion stability, rheology, and microstructure of egg white-polysaccharide mixtures.
    Erçelebi EA; Ibanoğlu E
    J Food Sci; 2009 Aug; 74(6):C506-12. PubMed ID: 19723189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hydrocolloids in the creaming of oil in water emulsions.
    Vélez G; Fernández MA; Muñoz J; Williams PA; English RJ
    J Agric Food Chem; 2003 Jan; 51(1):265-9. PubMed ID: 12502419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Front-face fluorescence spectroscopy study of globular proteins in emulsions: influence of droplet flocculation.
    Rampon V; Genot C; Riaublanc A; Anton M; Axelos MA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2490-5. PubMed ID: 12696925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum.
    Moschakis T; Murray BS; Dickinson E
    J Colloid Interface Sci; 2005 Apr; 284(2):714-28. PubMed ID: 15780315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in-water emulsions.
    Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2004 Jun; 52(11):3626-32. PubMed ID: 15161241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions.
    Nikiforidis CV; Kiosseoglou V
    J Agric Food Chem; 2010 Jan; 58(1):527-32. PubMed ID: 19947599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of xanthan-locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilised oil-in-water emulsions.
    Khouryieh H; Puli G; Williams K; Aramouni F
    Food Chem; 2015 Jan; 167():340-8. PubMed ID: 25148996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creaming and oxidative stability of fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes: Impact of pH.
    Owens C; Griffin K; Khouryieh H; Williams K
    Food Chem; 2018 Jan; 239():314-322. PubMed ID: 28873574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study.
    Pocan P; Ilhan E; Oztop MH
    J Food Sci; 2019 May; 84(5):1087-1093. PubMed ID: 30958906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of synergism of sucrose ester and xanthan gum on the stability of walnut milk.
    Liu Y; Wu Q; Zhang J; Mao X
    J Sci Food Agric; 2024 Mar; 104(4):1909-1919. PubMed ID: 37884470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins.
    Onsaard E; Vittayanont M; Srigam S; McClements DJ
    J Agric Food Chem; 2005 Jul; 53(14):5747-53. PubMed ID: 15998143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.