BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17177782)

  • 1. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa.
    Al-Ahmad H; Gressel J
    Plant Biotechnol J; 2006 Jan; 4(1):23-33. PubMed ID: 17177782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of interspecific hybridization between crops and weedy relatives on the evolution of flowering time in weedy phenotypes.
    Vacher C; Kossler TM; Hochberg ME; Weis AE
    PLoS One; 2011 Feb; 6(2):e14649. PubMed ID: 21304909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa.
    Sohn SI; Oh YJ; Lee KR; Ko HC; Cho HS; Lee YH; Chang A
    PLoS One; 2016; 11(9):e0162103. PubMed ID: 27632286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rich TILLING resource for studying gene function in Brassica rapa.
    Stephenson P; Baker D; Girin T; Perez A; Amoah S; King GJ; Østergaard L
    BMC Plant Biol; 2010 Apr; 10():62. PubMed ID: 20380715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Shock in Developing Embryos of a
    Zhou W; Zhang L; He J; Chen W; Zhao F; Fu C; Li M
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata.
    Zou J; Hu D; Mason AS; Shen X; Wang X; Wang N; Grandke F; Wang M; Chang S; Snowdon RJ; Meng J
    Plant Biotechnol J; 2018 Feb; 16(2):507-519. PubMed ID: 28703467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding.
    Jugulam M; Ziauddin A; So KK; Chen S; Hall JC
    PLoS One; 2015; 10(11):e0141418. PubMed ID: 26536372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis.
    Girke A; Schierholt A; Becker HC
    Theor Appl Genet; 2012 Apr; 124(6):1017-26. PubMed ID: 22159759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea).
    Liu YB; Tang ZX; Darmency H; Stewart CN; Di K; Wei W; Ma KP
    PLoS One; 2012; 7(6):e39705. PubMed ID: 22745814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica.
    Tu Y; Sun J; Ge X; Li Z
    Ann Bot; 2009 May; 103(7):1039-48. PubMed ID: 19258339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars (
    Ton LB; Neik TX; Batley J
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 33008008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus.
    Rong H; Yang W; Zhu H; Jiang B; Jiang J; Wang Y
    BMC Plant Biol; 2021 Mar; 21(1):140. PubMed ID: 33726676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids.
    Albertin W; Balliau T; Brabant P; Chèvre AM; Eber F; Malosse C; Thiellement H
    Genetics; 2006 Jun; 173(2):1101-13. PubMed ID: 16624896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of genetically engineered canola populations in the U.S. and the adventitious presence of transgenes in the environment.
    Travers SE; Bishop DB; Sagers CL
    PLoS One; 2024; 19(5):e0295489. PubMed ID: 38776262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brassica rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes.
    McAlvay AC; Ragsdale AP; Mabry ME; Qi X; Bird KA; Velasco P; An H; Pires JC; Emshwiller E
    Mol Biol Evol; 2021 Jul; 38(8):3358-3372. PubMed ID: 33930151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiomics analysis reveals a link between Brassica-specific miR1885 and rapeseed tolerance to low temperature.
    Xu P; Zhang W; Wang X; Zhu Y; Liang W; He Y; Yu X
    Plant Cell Environ; 2023 Nov; 46(11):3405-3419. PubMed ID: 37564020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The establishment of genetically engineered canola populations in the U.S.
    Schafer MG; Ross AA; Londo JP; Burdick CA; Lee EH; Travers SE; Van de Water PK; Sagers CL
    PLoS One; 2011; 6(10):e25736. PubMed ID: 21998689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and efficient
    Mooney BC; Graciet E
    Plant Direct; 2020 Jul; 4(7):e00237. PubMed ID: 32775949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions.
    Uwimana B; Smulders MJ; Hooftman DA; Hartman Y; van Tienderen PH; Jansen J; McHale LK; Michelmore RW; van de Wiel CC; Visser RG
    Theor Appl Genet; 2012 Oct; 125(6):1097-111. PubMed ID: 22660630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports.
    Katsuta K; Matsuo K; Yoshimura Y; Ohsawa R
    Breed Sci; 2015 Jun; 65(3):265-75. PubMed ID: 26175624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.