These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17178546)

  • 21. Thalamic relay of afferent responses to 1- to 12-Hz whisker stimulation in the rat.
    Hartings JA; Simons DJ
    J Neurophysiol; 1998 Aug; 80(2):1016-9. PubMed ID: 9705491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing.
    Shoykhet M; Doherty D; Simons DJ
    Somatosens Mot Res; 2000; 17(2):171-80. PubMed ID: 10895887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diverse and temporally precise kinetic feature selectivity in the VPm thalamic nucleus.
    Petersen RS; Brambilla M; Bale MR; Alenda A; Panzeri S; Montemurro MA; Maravall M
    Neuron; 2008 Dec; 60(5):890-903. PubMed ID: 19081382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura.
    Levy D; Strassman AM
    J Neurophysiol; 2002 Dec; 88(6):3021-31. PubMed ID: 12466427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential thermosensitivity of sensory neurons in the guinea pig trigeminal ganglion.
    Cabanes C; Viana F; Belmonte C
    J Neurophysiol; 2003 Oct; 90(4):2219-31. PubMed ID: 14534264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit.
    Minnery BS; Bruno RM; Simons DJ
    J Neurophysiol; 2003 Sep; 90(3):1556-70. PubMed ID: 12724362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response properties of periodontal mechanosensitive neurons in the trigeminal ganglion of rabbit and neuronal activities during grinding-like jaw movement induced by cortical stimulation.
    Nagata K; Itoh S; Tsuboi A; Takafuji Y; Tabata T; Watanabe M
    Arch Oral Biol; 2008 Dec; 53(12):1138-48. PubMed ID: 18691698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents.
    Stüttgen MC; Rüter J; Schwarz C
    J Neurosci; 2006 Jul; 26(30):7933-41. PubMed ID: 16870738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role for wind-up in trigeminal sensory processing: intensity coding of nociceptive stimuli in the rat.
    Coste J; Voisin DL; Luccarini P; Dallel R
    Cephalalgia; 2008 Jun; 28(6):631-9. PubMed ID: 18422721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The collateral projection from the dorsal raphe nucleus to whisker-related, trigeminal sensory and facial motor systems in the rat.
    Lee SB; Lee HS; Waterhouse BD
    Brain Res; 2008 Jun; 1214():11-22. PubMed ID: 18466886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of spreading cortical depression on the activity of sensory neurons from the trigeminal complex].
    Ivanov VE; Amelin AV
    Biull Eksp Biol Med; 1998 Dec; 126(12):640-2. PubMed ID: 9934507
    [No Abstract]   [Full Text] [Related]  

  • 33. Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat.
    Mitchinson B; Arabzadeh E; Diamond ME; Prescott TJ
    Biol Cybern; 2008 Mar; 98(3):185-94. PubMed ID: 18180946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thalamocortical conduction times and stimulus-evoked responses in the rat whisker-to-barrel system.
    Simons DJ; Carvell GE; Kyriazi HT; Bruno RM
    J Neurophysiol; 2007 Nov; 98(5):2842-7. PubMed ID: 17804575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central plasticity in rat trigeminal primary sensory neurons innervating vibrissae after neonatal peripheral nerve injury.
    Johansson K; Arvidsson J
    Neurosci Lett; 1994 Feb; 167(1-2):187-90. PubMed ID: 8177521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery.
    Roch M; Messlinger K; Kulchitsky V; Tichonovich O; Azev O; Koulchitsky S
    Neuroscience; 2007 Dec; 150(3):681-91. PubMed ID: 18023985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prenatal development of the receptive fields of individual trigeminal ganglion cells in the rat.
    Chiaia NL; Bauer WR; Rhoades RW
    J Neurophysiol; 1993 Apr; 69(4):1171-80. PubMed ID: 8492156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.
    Bush NE; Schroeder CL; Hobbs JA; Yang AE; Huet LA; Solla SA; Hartmann MJ
    Elife; 2016 Jun; 5():. PubMed ID: 27348221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-dependent processing in the vibrissa sensory system.
    Moore CI
    J Neurophysiol; 2004 Jun; 91(6):2390-9. PubMed ID: 15136599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the gates. Focus on "Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion".
    Szwed M; Ahissar E
    J Neurophysiol; 2006 May; 95(5):2729-30. PubMed ID: 16617175
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.